BEDIENUNGSANLEITUNG

ba77160d07 10/2021

Multi 3510 IDS

DIGITALES MESSGERÄT FÜR IDS-SENSOREN (pH/REDOX/O2/LEITFÄHIGK.)

a **xylem** brand

Copyright

© 2021 Xylem Analytics Germany GmbH Printed in Germany.

Inhaltsverzeichnis

1	Überblick			. 7
	1.1	Mess	sgerät Multi 3510 IDS	. 7
	1.2	Sens	soren	. 7
	1.	2.1	IDS-Sensoren	. 8
	1.	2.2	Drahtloser Betrieb von IDS-Sensoren	. 8
	1.	2.3	IDS-Adapter für analoge Sensoren	. 9
	1.:	2.4	Automatische Sensorerkennung	. 9
2	Sich	erhei	it	10
	2.1	Siche	erheitsinformationen	10
	2.	1.1	Sicherheitsinformationen in der Bedienungsanleitung	10
	2.	1.2	Sicherheitskennzeichnungen auf dem Messgerät	10
	2.	1.3	Weitere Dokumente mit Sicherheitsinformationen	10
	2.2	Siche	erer Betrieb	11
	2.	2.1	Bestimmungsgemäßer Gebrauch	11
	2.	2.2	Voraussetzungen für den sicheren Betrieb	11
	2.	2.3	Unzulässiger Betrieb	11
3	Inbe	trieb	nahme	12
	3.1	Liefe	rumfang	12
	3.2	Ener	gieversorgung	12
	33	Frsti	nbetriebnahme	12
	3.	3.1	Batterien einlegen	13
4	Bedi	ienur	ηα	14
•	<u> </u>		meine Bediennrinzinien	14
	4.1	7 (iigc 1 1	Tastenfeld	14
	4.	1.2	Display	15
	4.	1.3	Statusinformationen (Messgerät).	15
	4.	1.4	Buchsenfeld	16
	4.	1.5	Sensor-Info	16
	4.2	Mess	sgerät einschalten	17
	4.3	Mess	sgerät ausschalten	18
	4.4	Anm	elden mit Benutzernamen	18
	4.5	Navi	gation	19
	4.	5.1	Betriebsarten	19
	4.	5.2	Messwertansicht	20
	4.	5.3	Menüs und Dialoge	20
	4.	5.4	Beispiel 1 zur Navigation: Sprache einstellen	22
	4.	5.5	Beispiel 2 zur Navigation: Datum und Uhrzeit einstellen.	23

5	pH-Wert		25
	5.1 Mes	ssen	25
	5.1.1	pH-Wert messen	25
	5.1.2	Temperatur messen	26
	5.2 Kali	brieren pH	27
	5.2.1	Warum kalibrieren?	27
	5.2.2	Wann unbedingt kalibrieren?	27
	5.2.3	Durchführung einer automatischen Kalibrierung (AutoCal)	27
	5.2.4	Durchführung einer manuellen Kalibrierung (ConCal)	30
	5.2.5	Kalibrierpunkte	33
	5.2.6	Kalibrierdaten	34
	5.2.7	Kontinuierliche Messwertkontrolle (CMC-Funktion)	. 37
	5.2.8	QSC-Funktion (Sensorqualitätskontrolle)	38
6	Redoxsp	bannung	41
	6.1 Mes	ssen	41
	6.1.1	Redoxspannung messen	41
	6.1.2	Temperatur messen	42
	6.2 Kali	brieren Redox	43
7	Sauersto	off	44
	7.1 Mes	ssen	. 44
	7.1.1	Sauerstoff messen	44
	7.1.2	Temperatur messen	46
	7.2 FDC	$D^{\mathbb{R}}$ Check (Überprüfung des EDO [®] 925)	46
	7.2.1	Warum überprüfen?	46
	7.2.2	Wann überprüfen?	46
	7.2.3	FDO [®] Check durchführen	46
	7.2.4	Bewertung	47
	7.3 Kali	brieren	48
	7.3.1	Warum kalibrieren?	48
	7.3.2	Wann kalibrieren?	48
	7.3.3	Kalibrierverfahren	48
	7.3.4	Kalibrierung in wasserdampf-gesättigter Luft	49
	7.3.5	Kalibrieren über Vergleichsmessung (FDO Comp)	49
	7.3.6	Kalibrierdaten	51
8	Leitfähig	gkeit	53
	8.1 Mes	ssen	53
	8.1.1	Leitfähigkeit messen	53
	8.1.2	Temperatur messen	55
	8.2 Tem	nperaturkompensation	55
	8.3 Kali	brieren	55
	8.3.1	Warum kalibrieren?	55
	8.3.2	Wann kalibrieren?	56
	8.3.3	Zellenkonstante bestimmen	
		(Kalibrierung im Kontrollstandard)	56
	8.3.4	Kalibrierdaten	57

9	Trübung	smessung (VisoTurb [®] 900-P)	. 59
	9.1 Mes	sen	. 59
	9.1.1	Trübung messen	. 59
	9.2 Kalib	prieren	. 61
	9.2.1	Warum kalibrieren?	. 61
	9.2.2	Wann kalibrieren?	. 61
	9.2.3	Kalibrierstandards	. 62
	9.2.4	Kalibrierung durchführen	. 62
	9.2.5	Kalibrierdaten	. 64
40	Finatall .		~~
10	Einstellu	ngen	. 00
	10.1 Mes		. 66
	10.1.1	Einstellungen für pH-Messungen	. 66
	10.1.2		. 67
	10.1.3		. 09
	10.2 Mes	Seinstellungen Redox	. 70
	10.2.1		. 70
	10.3 Mes		. 70
	10.3.1	(Menü für Mess- und Kalibriereinstellungen)	70
	10.4 Maa		. 70
	10.4 IVIES	Einstellungen für IDS Leitfähigkeitesenseren	. 72
	10.4.1		. 12
	10.5 Mes	Einstellungen für Trübungssonsoren	. 74
	10.0.1		. 74
			. 75
	10.0.1	Spolenn	. 75
	10.0.2	Automatische Stabilitätskontrolle	. 76
	10.0.0	Abschaltautomatik	. 70
	10.6.5	Displaybeleuchtung	. 77
	10.7 Rück	(setzen (Reset)	77
	10.7 1	Messeinstellungen rücksetzen	77
	10.7.2	Systemeinstellungen rücksetzen	. 80
11	Speicher	n	. 81
	11.1 Man	uell speichern	. 81
	11.2 Auto	matisch intervallweise speichern	. 82
	11.3 Mes	sdatenspeicher	. 84
	11.3.1	Messdatenspeicher bearbeiten	. 84
	11.3.2	Messdatenspeicher löschen	. 85
	11.3.3	Messdatensatz	. 85
	11.3.4	Speicherplätze	. 86
12	Daten üb	ertragen (USB-Schnittstelle)	87
14		elle Messdaten ausgeben	. 01
	12.1 AKIU	n ühertragen (en einen DC)	. 0/
			. 0/
	12.3 PC a	anschlieisen / Schnittstelle USB-B (USB Device)	. 8/
	12.4 Optio		. 88
	12.5 Multi	Lab Importer	. 88

13	Wartung, Reinigung, Entsorgung	90
	13.1 Wartung	90
	13.1.1 Allgemeine Wartungsarbeiten	90
	13.1.2 Batterien austauschen	90
	13.2 Reinigung	91
	13.3 Verpackung	91
	13.4 Entsorgung	91
14	Was tun, wenn	92
	14.1 pH	92
	14.2 Sauerstoff	93
	14.3 Leitfähigkeit	94
	14.4 Trübung	94
	14.5 Allgemein	95
15	Technische Daten	97
	15.1 Messbereiche, Auflösungen, Genauigkeiten	97
	15.2 Allgemeine Daten	97
16	Firmware-Update	99
	16.1 Firmware-Update für das Messgerät Multi 3510 IDS	99
	16.2 Firmware-Update für IDS-Sensoren	100
17	Fachwortverzeichnis	101
18	Stichwortverzeichnis	105

1 Überblick

1.1 Messgerät Multi 3510 IDS

Mit dem Messgerät Multi 3510 IDS können Sie schnell und zuverlässig Messungen (pH, U, ISE, Leitfähigkeit, Sauerstoff, Trübung) durchführen.

Das Multi 3510 IDS bietet für alle Anwendungsbereiche ein Höchstmaß an Bedienkomfort, Zuverlässigkeit und Messsicherheit.

Das Multi 3510 IDS unterstützt Sie beim Arbeiten mit folgenden Funktionen:

- automatische Sensorerkennung,
- CMC (Kontinuierliche Messwertkontrolle),
- QSC (Sensorqualitätskontrolle),
- Elektronische Zugangskontrolle,
- Datenübertragung über die USB-Schnittstelle (USB-B).

1.2 Sensoren

Ein messbereites Messsystem besteht aus dem Messgerät Multi 3510 IDS und einem geeigneten Sensor.

Geeignete Sensoren sind IDS-pH-Sensoren, IDS-Redoxsensoren, IDS-Leitfähigkeitssensoren und IDS-Sauerstoffsensoren.

Informationen über verfügbare IDS-Sensoren und IDS-Adapter erhalten Sie im Internet.

Am Multi 3510 IDS können Sie über einen IDS-Adapter auch Nicht-IDS-Sensoren betreiben. Die Vorteile der Sensorerkennung können Sie dann aber nicht nutzen.

1.2.1 IDS-Sensoren

IDS-Sensoren

- unterstützen die automatische Sensorerkennung
- zeigen im Einstellmenü individuell nur die zum Sensor passenden Einstellungen
- verarbeiten Signale im Sensor digital, so dass auch mit langen Kabeln präzise und störungssichere Messungen möglich sind
- erleichtern die Zuordung von Sensor zu Messparameter durch farblich unterscheidbare Verschlüsse
- besitzen Quick-Lock-Verschlüsse, mit denen Sie die Sensoren am Gerät sichern können.

Sensordaten von IDS-Sensoren übermitteln folgende Sensordaten an das Messgerät:

- SENSOR ID
 - Sensorname
 - Sensorseriennummer
- Kalibrierdaten
- Messeinstellungen

Die Kalibrierdaten werden nach jedem Kalibrieren im IDS-Sensor aktualisiert. Während Daten im Sensor aktualisiert werden, zeigt das Display eine Meldung an.

Den Sensornamen und die Seriennummer können Sie in der Messwertansicht für den ausgewählten Sensor mit dem Softkey [i] anzeigen. Weitere im Sensor gespeicherte Sensordaten können Sie anschließend mit dem Softkey [Mehr] anzeigen (siehe Abschnitt 4.1.5 SENSOR-INFO, Seite 16).

1.2.2 Drahtloser Betrieb von IDS-Sensoren

Mit Hilfe der Adapter im IDS WLM System können Sie IDS-Sensoren mit Steckkopf (Variante P) drahtlos mit Ihrem Multi 3510 IDS verbinden. Weitere Informationen zum drahtlosen Betrieb von IDS-Sensoren:

- Internet
 - Bedienungsanleitung zu dem IDS WLM System.

1.2.3 IDS-Adapter für analoge Sensoren

Mit Hilfe eines IDS-Adapters können Sie auch analoge Sensoren am Multi 3510 IDS betreiben. Die Kombination aus IDS-Adapter und Sensor verhält sich wie ein IDS-Sensor.

Im Adapterkopf befindet sich die Messelektronik mit den gespeicherten Adapterdaten. Die Adapterdaten entsprechen den Sensordaten.

Informationen über verfügbare IDS-Adapter erhalten Sie im Internet.

Details zum IDS-Adapter erhalten Sie in der Bedienungsanleitung zu dem Adapter.

1.2.4 Automatische Sensorerkennung

Die automatische Sensorerkennung für IDS-Sensoren ermöglicht

- den Betrieb eines IDS-Sensors an verschiedenen Messgeräten ohne Neukalibrierung
- die Zuordnung von Messdaten zu einem IDS-Sensor
 - Messdatensätze werden immer mit Sensorname und Sensorseriennummer gespeichert und ausgegeben.
- die Zuordnung von Kalibrierdaten zu einem Sensor
 - Kalibrierdaten und Kalibrierhistorie werden immer mit Sensorname und Sensorseriennummer gespeichert und ausgegeben.
- das automatische Ausblenden von Menüs, die diesen Sensor nicht betreffen

Um die automatische Sensorerkennung nutzen zu können, benötigen Sie ein Messgerät, das die automatische Sensorerkennung unterstützt (z. B. Multi 3510 IDS) und einen digitalen IDS-Sensor.

In digitalen IDS-Sensoren sind Sensordaten hinterlegt, die den Sensor eindeutig identifizieren.

Die Sensordaten werden automatisch vom Messgerät übernommen.

2 Sicherheit

2.1 Sicherheitsinformationen

2.1.1 Sicherheitsinformationen in der Bedienungsanleitung

Diese Bedienungsanleitung enthält wichtige Informationen für den sicheren Betrieb des Messgeräts. Lesen Sie diese Bedienungsanleitung vollständig durch und machen Sie sich mit dem Messgerät vertraut, bevor sie es in Betrieb nehmen oder damit arbeiten. Halten Sie die Bedienungsanleitung immer griffbereit, um bei Bedarf darin nachschlagen zu können.

Besonders zu beachtende Hinweise für die Sicherheit sind in der Bedienungsanleitung hervorgehoben. Sie erkennen diese Sicherheitshinweise am Warnsymbol (Dreieck) am linken Rand. Das Signalwort (z. B. "VORSICHT") steht für die Schwere der Gefahr:

WARNUNG

weist auf eine gefährliche Situation hin, die zu schweren (irreversiblen) Verletzungen oder Tod führen kann, wenn der Sicherheitshinweis nicht befolgt wird.

VORSICHT

weist auf eine gefährliche Situation hin, die zu leichten (reversiblen) Verletzungen führen kann, wenn der Sicherheitshinweis nicht befolgt wird.

HINWEIS

weist auf Sachschäden hin, welche entstehen können, wenn die angegebenen Maßnahmen nicht befolgt werden.

2.1.2 Sicherheitskennzeichnungen auf dem Messgerät

Beachten Sie alle Aufkleber, Hinweisschilder und Sicherheitssymbole auf dem Messgerät und im Batteriefach. Ein Warnsymbol (Dreieck) ohne Text verweist auf Sicherheitsinformationen in der Bedienungsanleitung.

2.1.3 Weitere Dokumente mit Sicherheitsinformationen

Folgende Dokumente enthalten weitere Informationen, die Sie zu ihrer Sicherheit beachten sollten, wenn Sie mit einem Messystem arbeiten:

- Bedienungsanleitungen zu Sensoren und weiterem Zubehör
- Sicherheitsdatenblätter zu Kalibrier- und Wartungsmitteln (z. B. Pufferlösungen, Elektrolytlösungen, usw.)

2.2 Sicherer Betrieb

2.2.1 Bestimmungsgemäßer Gebrauch

Der bestimmungsgemäße Gebrauch des Messgerätes besteht ausschließlich in der pH-, Redox-, Sauerstoff und Leitfähigkeits-Messung in einer Laborumgebung.

Bestimmungsgemäß ist ausschließlich der Gebrauch gemäß den Instruktionen und den technischen Spezifikationen dieser Bedienungsanleitung (siehe Abschnitt 15 TECHNISCHE DATEN, Seite 97).

Jede darüber hinausgehende Verwendung ist nicht bestimmungsgemäß.

2.2.2 Voraussetzungen für den sicheren Betrieb

Beachten Sie folgende Punkte für einen sicheren Betrieb:

- Das Messgerät darf nur seinem bestimmungsgemäßen Gebrauch entsprechend verwendet werden.
- Das Messgerät darf nur mit den in der Bedienungsanleitung genannten Energiequellen versorgt werden.
- Das Messgerät darf nur unter den in der Bedienungsanleitung genannten Umgebungsbedingungen betrieben werden.
- Das Messgerät darf nur geöffnet werden, wenn dies in dieser Bedienungsanleitung ausdrücklich beschrieben ist (Beispiel: Einlegen von Batterien).

2.2.3 Unzulässiger Betrieb

Das Messgerät darf nicht in Betrieb genommen werden, wenn es:

- eine sichtbare Beschädigung aufweist (z. B. nach einem Transport)
- längere Zeit unter ungeeigneten Bedingungen gelagert wurde (Lagerbedingungen, siehe Abschnitt 15 TECHNISCHE DATEN, Seite 97)

3 Inbetriebnahme

3.1 Lieferumfang

- Messgerät Multi 3510 IDS
- 4 Batterien 1,5 V Mignon Typ AA
- Kurzbedienungsanleitung
- CD-ROM mit
 - USB-Treibern
 - ausführlicher Bedienungsanleitung (4 Sprachen)
 - Software MultiLab User
 - Software MultiLab Importer

3.2 Energieversorgung

Das Multi 3510 IDS wird auf folgende Arten mit Energie versorgt:

- Batteriebetrieb (4 Batterien 1,5 V Mignon Typ AA)
- USB-Betrieb über ein angeschlossenes USB-B-Kabel

3.3 Erstinbetriebnahme

Führen Sie folgende Tätigkeiten aus:

- Mitgelieferte Batterien einlegen
- Messgerät einschalten (siehe Abschnitt 4.2 MESSGERÄT EINSCHALTEN, Seite 17)
- Datum und Uhrzeit einstellen (siehe Abschnitt 4.5.5 BEISPIEL 2 ZUR NAVIGATION: DATUM UND UHRZEIT EIN-STELLEN, Seite 23)

3.3.1 Batterien einlegen

Sie können das Messgerät wahlweise mit Batterien oder Akkus (Ni-MH) betreiben. Zum Laden der Akkus benötigen Sie ein externes Ladegerät.

- 1. Die Schrauben (1) an der Geräteunterseite lösen.
- 2. Das Batteriefach (2) an der Geräteunterseite öffnen.

VORSICHT Achten Sie auf die richtige Polung der Batterien. Die ±-Angaben im Batteriefach müssen mit den ±-Angaben auf den Batterien übereinstimmen.

- 3. Vier Batterien (Typ Mignon AA) ins Batteriefach legen.
- 4. Das Batteriefach (2) schließen.
- 5. Datum und Uhrzeit einstellen (siehe Abschnitt 4.5.5 BEISPIEL 2 ZUR NAVIGATION: DATUM UND UHRZEIT EINSTELLEN, Seite 23).

4 Bedienung

4.1 Allgemeine Bedienprinzipien

4.1.1 Tastenfeld

In dieser Bedienungsanleitung werden Tasten durch spitze Klammern <..> veranschaulicht. Das Tastensymbol (z. B. **<ENTER>**) bedeutet in der Bedienungsanleitung generell einen kurzen Tastendruck (drücken und loslassen). Ein langer Tastendruck (drücken und für ca. 2 sec halten) wird durch einen Strich hinter dem Tastensymbol (z. B. **<ENTER_ >**) veranschaulicht.

<f1>: <f1>: <f2>: <f2>:</f2></f2></f1></f1>	Softkeys, die situationsbezogene Funktionen zur Verfügung stellen, z.B.: < F1 >/[Info]: Informationen zu einem Sensor ansehen
<on off="">:</on>	Messgerät ein-/ausschalten
< M >:	Messgröße wählen / Einstellungen beenden
<cal>: <cal>:</cal></cal>	Kalibrierverfahren aufrufen Kalibrierdaten anzeigen
<sto>: <sto_>:</sto_></sto>	Messwert manuell speichern Automatische Speicherung konfigurieren und starten
<rcl>: <rcl>:</rcl></rcl>	Manuell gespeicherte Messwerte anzeigen Automatisch gespeicherte Messwerte anzeigen
<▲ ><♥ >: <▲ _><♥ _>:	Menüsteuerung, Navigation Werte erhöhen, verringern Kontinuierlich Werte erhöhen, verringern
<enter>: <enter_>:</enter_></enter>	Menü für Messeinstellungen öffnen / Eingaben bestätigen Menü für Systemeinstellungen öffnen
<ar></ar>	Messwert einfrieren (HOLD-Funktion) AutoRead-Messung ein-/ausschalten

4.1.2 Display

Beispiel pH:

4.1.3 Statusinformationen (Messgerät)

AR	Stabilitätskontrolle (AutoRead) ist aktiviert
HOLD	Messwert ist eingefroren (Taste <ar></ar>)
	Batterien sind weitgehend entladen
	Daten werden automatisch intervallweise an die USB-B- Schnittstelle ausgegeben

4.1.4 Buchsenfeld

Schließen Sie an das Messgerät nur Sensoren an, die keine unzulässigen Spannungen oder Ströme (> SELV und > Stromkreis mit Strombegrenzung) einspeisen können. WTW-IDS-Sensoren und IDS-Adapter erfüllen diese Bedingungen.

4.1.5 Sensor-Info

Sie können jederzeit die aktuellen Sensordaten und die Sensoreinstellungen eines angeschlossenen Sensors anzeigen. Die Sensordaten erhalten Sie aus der Messwertansicht über den Softkey **<F1>**/[*Info*].

 In der Messwertansicht: Mit <F1>/[Info] die Sensordaten (Sensorname, Seriennummer) anzeigen.

2. Mit **<F1>**/[*Mehr*] weitere Sensordaten (Einstellungen) anzeigen.

4.2 Messgerät einschalten

- 1. Mit **<On/Off>** das Gerät einschalten. Das Gerät führt einen Selbsttest durch.
- 2. Sensor anstecken. Das Messgerät ist messbereit.

Ist für das Messgerät die Benutzerverwaltung aktiviert, erscheint nach dem Einschalten des Messgeräts der Dialog *Anmelden* (siehe Abschnitt 4.4 ANMELDEN MIT BENUTZERNAMEN, Seite 18).

Im Auslieferzustand ist die Benutzerverwaltung nicht aktiv.

4.3 Messgerät ausschalten

1. Mit **<On/Off>** das Gerät ausschalten.

4.4 Anmelden mit Benutzernamen

Nach Aktivierung der Benutzerverwaltung durch den Administrator (Software MultiLab User, auf beiliegender CD-ROM) sind Messungen mit dem Messgerät nur noch nach Anmeldung mit einem Benutzernamen möglich. Der Benutzername wird in Messwerten und Protokollen dokumentiert.

Im Menü *Benutzername* sind alle vom Administrator angelegten Benutzernamen aufgelistet. Der Administrator legt für jeden Benutzer einzeln fest, ob für die Anmeldung am Gerät ein Passworts erforderlich ist.

Ist der Menüpunkt *Passwort* ausgegraut, ist kein Passwort zum Anmelden erforderlich.

1. Mit **<On/Off>** das Gerät einschalten. Der Dialog *Anmelden* erscheint.

Anmelden	
Benutzername	Admin
Passwort	####
Passwort ändern	
03.04.2013 08:00	

- Mit <▲ ><▼ > den Menüpunkt *Benutzername* wählen und mit <ENTER> bestätigen. Der Benutzername ist markiert.
- 3. Mit <▲ ><▼ > einen Benutzernamen wählen und mit <ENTER> bestätigen.

Ist kein Passwort erforderlich, erfolgt die Anmeldung sofort. Wenn ein Sensor angeschlossen ist, zeigt das Display die Messwertansicht.

 Wenn ein Passwort erforderlich ist: Mit <▲ ><▼ > den Menüpunkt *Passwort* wählen und mit <ENTER> bestätigen.

1	
	i

Beim ersten Anmelden mit einem Benutzernamen legt der Benutzer sein Passwort fest. Ein gültiges Passwort besteht aus 4 Ziffern. Der Benutzer kann sein Passwort beim nächsten Anmelden

ändern.

 Mit <▲ ><▼ > die Ziffer der markierten Position ändern. Mit <F2>/[▶] zur nächsten Position des Passworts wechseln. Wenn das Passwort vollständig eingegeben ist, das Passwort mit <ENTER> bestätigen. Die Anmeldung erfolgt. Wenn ein Sensor angeschlossen ist, zeigt das Display die Messwertansicht.

Passwort ändern Wenn der Administrator einen Zugang mit Passwortschutz eingerichtet hat:

- 1. Mit **<On/Off>** das Gerät einschalten. Der Dialog *Anmelden* erscheint.
- Mit <▲ ><▼ > den Menüpunkt *Benutzername* wählen und mit <ENTER> bestätigen. Der Benutzername ist markiert.
- 3. Mit <▲ ><▼ > einen Benutzernamen wählen und mit <ENTER> bestätigen.
- 4. Mit <▲ ><▼ > den Menüpunkt *Passwort ändern* wählen und mit <**ENTER**> bestätigen.
- 5. Im Feld *Passwort* mit <▲ ><▼ > und <F2>/[▶] das alte Passwort eingeben und mit <ENTER> bestätigen.
- Im Feld Neues Passwort mit <▲ ><▼ > und <F2>/[▶] das neue Passwort eingeben und mit <ENTER> bestätigen. Das Passwort ist geändert. Die Anmeldung erfolgt. Wenn ein Sensor angeschlossen ist, zeigt das Display die Messwertansicht.

Passwort Wenden Sie sich an den Administrator. **vergessen?**

4.5 Navigation

4.5.1 Betriebsarten

Betriebsart	Erläuterung
Messen	Das Display zeigt die Messdaten des angeschlossenen Sensors in der Messwertansicht
Kalibrieren	Das Display zeigt einen Kalibrierablauf mit Kalibrierinforma- tionen, Funktionen und Einstellungen

Betriebsart	Erläuterung
Speichern	Das Messgerät speichert Messdaten manuell oder automa- tisch
Daten übertragen	Das Messgerät überträgt Messdaten und Kalibrierprotokolle automatisch oder manuell an eine USB-B-Schnittstelle.
Einstellen	Das Display zeigt das System- oder ein Sensormenü mit Untermenüs, Einstellungen und Funktionen

4.5.2 Messwertansicht

In der Messwertansicht

- öffnen Sie mit <ENTER> (<u>kurzer</u> Druck) das zugehörige Menü für Kalibrierund Messeinstellungen.
- öffnen Sie mit <ENTER_ > (langer Druck (ca. 2 s) auf <ENTER>) das Menü Speicher & Konfig. mit den sensorunabhängigen Einstellungen.
- wechseln Sie mit einem Druck auf <M> die Anzeige im Messfenster (z. B. pH <-> mV).

4.5.3 Menüs und Dialoge

Die Menüs für Einstellungen sowie Dialoge in Abläufen enthalten weitere Unterelemente. Die Auswahl erfolgt mit den Tasten $< \Delta > < \nabla >$. Die aktuelle Auswahl ist jeweils mit einem Rahmen dargestellt.

Untermenüs

Der Name des Untermenüs erscheint am oberen Rand des Rahmens. Untermenüs werden durch Bestätigen mit **<ENTER>** geöffnet. Beispiel:

System
Allgemein
Schnittstelle
Uhrfunktion
Service Information
Rücksetzen
Zurück 03.04.2013 08:00

• Einstellungen

Einstellungen sind durch einen Doppelpunkt gekennzeichnet. Die aktuelle Einstellung erscheint am rechten Rand. Mit **<ENTER>** wird der Einstellmodus geöffnet. Anschließend kann die Einstellung mit **<\Delta ><\nabla >** und **<ENTER>** geändert werden. Beispiel:

Allgemein	
Sprache:	Deutsch
Akustisches Signal:	aus
Beleuchtung:	ein
Kontrast:	12
Abschaltzeit:	1 h
Temperatur Einheit:	°C
Stabilitätskontrolle:	ein
Zurück 03.04.2013 08:00	

• Funktionen

Funktionen sind durch den Namen der Funktion gekennzeichnet. Sie werden durch Bestätigen mit **<ENTER>** sofort ausgeführt. Beispiel: Funktion *Kalibrierprotokoll* anzeigen.

pH	1	
Kalibrierprotokoll		
Kalibrier-Speicher		
Puffer:	TEC	
Einpunktkalibrierung:	ja	
Kalibrierintervall:	7 d	
Einheit für Steigung:	mV/pH	
[i] 2.00 4.01 7.00 10.01 (25 °C)		
Zurück 03.04.2013 08:00		

• Meldungen

Informationen sind durch das Symbol [i] gekennzeichnet. Sie können nicht ausgewählt werden. Beispiel:

— pH		
Kalibrier-Speicher		
Puffer:	TEC	
Einpunktkalibrierung: ja		
Kalibrierintervall:	7 d	
Einneit für Steigung:	mv/рн	
[i] 2.00 4.01 7.00 10.01 (25 °C)		
(Zurück) 03.04.2013 08:00		

4.5.4 Beispiel 1 zur Navigation: Sprache einstellen

Die Taste <**On/Off>** drücken.
 Die Messwertansicht erscheint.
 Das Gerät befindet sich in der Betriebsart Messen.

2. Mit **<ENTER_ >** das Menü *Speicher & Konfig.* öffnen. Das Gerät befindet sich in der Betriebsart Einstellen.

System
Speicher
Zurück 03.04.2013 08:00

- 3. Mit <▲ ><▼ > das Untermenü *System* markieren. Die aktuelle Auswahl ist mit einem Rahmen dargestellt.
- 4. Mit **<ENTER>** das Untermenü *System* öffnen.

System
Allgemein
Schnittstelle
Uhrfunktion
Service Information
Rücksetzen
Zurück 03.04.2013 08:00

- 5. Mit <▲ ><▼ > das Untermenü Allgemein markieren. Die aktuelle Auswahl ist mit einem Rahmen dargestellt.
- 6. Mit **<ENTER>** das Untermenü *Allgemein* öffnen.

Allgemein	
Sprache:	Deutsch
Akustisches Signal:	aus
Beleuchtung:	ein
Kontrast:	50 %
Abschaltzeit:	1 h
Temperatur Einheit:	°C
Stabilitätskontrolle:	ein
Zurück 03.04.2013 08:00	

7. Mit **<ENTER>** den Einstellmodus für die Sprache öffnen.

Allgemein	
Sprache:	Deutsch
Akustisches Signal:	aus
Beleuchtung:	ein
Kontrast:	50 %
Abschaltzeit:	1 h
Temperatur Einheit:	°C
Zurück 03.04.2013 08:00	

- 8. Mit < >< > die gewünschte Sprache auswählen.
- Mit **<ENTER>** die Einstellung bestätigen. Das Gerät wechselt in die Betriebsart Messen. Die gewählte Sprache ist aktiv.

4.5.5 Beispiel 2 zur Navigation: Datum und Uhrzeit einstellen

Das Messgerät besitzt eine Uhr mit Datumsfunktion. Datum und Uhrzeit sind in der Statuszeile der Messwertansicht eingeblendet. Beim Speichern von Messwerten und beim Kalibrieren werden Datum und aktuelle Uhrzeit automatisch mitgespeichert.

Die richtige Einstellung von Datum und Uhrzeit und Datumsformat ist für folgende Funktionen und Anzeigen wichtig:

- Aktuelle Uhrzeit und Datum
- Kalibrierdatum

• Identifikation gespeicherter Messwerte.

Prüfen Sie deshalb die Uhrzeit in regelmäßigen Abständen.

Datum und Uhrzeit werden nach einem Abfall der Versorgungsspannung (leere Batterien) zurückgesetzt.

Datum, Uhrzeit und Datumsformat einstellen

Das Datumsformat kann von der Anzeige Tag, Monat, Jahr (*TT.MM.JJ*) auf Monat, Tag, Jahr (*MM/TT/JJ* oder *MM.TT.JJ*) umgestellt werden.

- In der Messwertansicht: Mit <ENTER_ > das Menü Speicher & Konfig. öffnen. Das Gerät befindet sich in der Betriebsart Einstellen.
- Mit <▲ ><▼ > und <ENTER> das Menü System / Uhrfunktion auswählen und bestätigen.
 Das Einstellmenü für Datum und Uhrzeit öffnet sich.

TT.MM.JJ
03.04.2013
14:53:40

- 3. Mit <▲ ><▼ > und <ENTER> *Zeit* auswählen und bestätigen. Die Stunden sind markiert.
- 4. Mit <▲ ><▼ > und <ENTER> die Einstellung ändern und bestätigen. Die Minuten sind markiert.
- 5. Mit <▲ ><▼ > und <ENTER> die Einstellung ändern und bestätigen. Die Sekunden sind markiert.
- 6. Mit <▲ ><▼ > und <ENTER> die Einstellung ändern und bestätigen. Die Zeit ist eingestellt.
- 7. Gegebenenfalls *Datum* und *Datumsformat* einstellen. Die Einstellung erfolgt in gleicher Weise wie die Einstellung der Uhrzeit.
- Mit <F1>/ in das übergeordnete Menü wechseln, um weitere Einstellungen vorzunehmen. oder Mit <M> in die Messwertansicht wechseln.

Das Gerät befindet sich in der Betriebsart Messen.

5 pH-Wert

- 5.1 Messen
- 5.1.1 pH-Wert messen

HINWEIS

Bei Anschluss von geerdetem PC/Drucker kann nicht in geerdeten Medien gemessen werden, da fehlerhafte Ergebnisse geliefert werden! Die USB-Schnittstelle ist nicht galvanisch getrennt.

- 1. Den IDS-pH-Sensor an das Messgerät anschließen. Das pH-Messfenster wird im Display angezeigt.
- 2. Gegebenenfalls mit **<M>** die Messgröße pH wählen.
- 3. Die Messlösung temperieren bzw. aktuelle Temperatur messen, falls die Messung ohne Temperaturmessfühler erfolgt.
- 4. Gegebenenfalls den IDS-pH-Sensor kalibrieren bzw. überprüfen.
- 5. Den IDS-pH-Sensor in die Messlösung eintauchen.

pН	0 14	
	7.007	ő
	25.0 °C	İ
Ŀ	L 01.02.2014 (USB-Ausga	be

Stabilitätskontrolle (AutoRead) & HOLD-Funktion

Die Funktion Stabilitätskontrolle (*AutoRead*) prüft kontinuierlich die Stabilität des Messsignals. Die Stabilität hat einen wesentlichen Einfluss auf die Reproduzierbarkeit des Messwerts.

Die Messgröße im Display blinkt

- sobald der Messwert den Stabilitätsbereich verlässt
- wenn die automatische Stabilitätskontrolle ausgeschaltet ist.

Unabhängig von der Einstellung für automatische *Stabilitätskontrolle* (siehe Abschnitt 10.6.3 AUTOMATISCHE STABILITÄTSKONTROLLE, Seite 76) im Menü *System* können Sie die Funktion *Stabilitätskontrolle* jederzeit manuell starten.

 Mit <AR> den Messwert einfrieren. Die Statusanzeige [HOLD] wird angezeigt. Die HOLD-Funktion ist aktiv.

Sie können jederzeit die Funktion *Stabilitätskontrolle* und die HOLD-Funktion mit **<AR>** oder **<M>** beenden.

 Mit <ENTER> die Funktion Stabilitätskontrolle manuell aktivieren. Während der Messwert als nicht stabil bewertet wird, erscheint die Statusanzeige [AR]. Es wird ein Fortschrittsbalken angezeigt und die Anzeige der Messgröße blinkt.

Sobald ein stabiler Messwert erkannt wird, erscheint die Statusanzeige [HOLD][AR]. Der Fortschrittsbalken verschwindet und die Anzeige der Messgröße blinkt nicht mehr.

Die aktuellen Messdaten werden an die Schnittstelle ausgegeben. Messdaten, die das Kriterium für die Stabilitätskontrolle erfüllen, erhalten den Zusatz AR.

Sie können jederzeit die Funktion *Stabilitätskontrolle* mit **<ENTER>** vorzeitig manuell beenden. Bei vorzeitigem Beenden der Funktion *Stabilitätskontrolle* werden die aktuellen Messdaten ohne Auto-Read-Info an die Schnittstelle ausgegeben.

3. Mit **<ENTER>** eine weitere Messung mit Stabilitätskontrolle starten. oder

Mit **<AR>** oder **<M>** den eingefrorenen Messwert wieder freigeben. Die Statusanzeige [AR] verschwindet. Das Display wechselt in die vorherige Darstellung zurück.

Kriterien für einen Die Funktion *Stabilitätskontrolle* überprüft, ob die Messwerte in dem überwachstabilen Messwert ten Zeitintervall stabil sind.

Messgröße	Zeitintervall	Stabilität im Zeitintervall
pH-Wert	15 Sekunden	Δ : besser 0,01 pH
Temperatur	15 Sekunden	Δ : besser 0,5 °C

Die Mindestdauer, bis ein Messwert als stabil bewertet wird, entspricht dem überwachten Zeitintervall. Die tatsächliche Dauer ist meist länger.

5.1.2 Temperatur messen

Für reproduzierbare pH-Messungen ist die Messung der Temperatur der Messlösung zwingend erforderlich.

IDS-Sensoren messen die Temperatur durch einen im IDS-Sensor integrierten Temperaturmessfühler.

Bei Betrieb eines Sensors ohne integrierten Temperaturmessfühler, z. B. über einen IDS-pH-Adapter, müssen Sie zunächst die Temperatur der Messlösung ermitteln und eingeben.

Welche Art der Temperaturmessung aktiv ist, erkennen Sie an der Anzeige der

Temperatur:

Temperatur- messfühler	Auflösung der TempAnzeige	TempMessung
ja	0,1 °C	Automatisch mit Temperaturmessfühler
-	1 °C	Manuell

5.2 Kalibrieren pH

5.2.1 Warum kalibrieren?

pH-Messketten altern. Dabei verändern sich Nullpunkt (Asymmetrie) und Steilheit der pH-Messkette. Als Folge wird ein ungenauer Messwert angezeigt. Durch das Kalibrieren werden die aktuellen Werte für Nullpunkt und Steilheit der Messkette ermittelt und gespeichert.

Kalibrieren Sie deshalb in regelmäßigen Abständen.

5.2.2 Wann unbedingt kalibrieren?

- Routinemäßig im Rahmen einer betrieblichen Qualitätssicherung.
- Wenn das Kalibrierintervall abgelaufen ist

5.2.3 Durchführung einer automatischen Kalibrierung (AutoCal)

Achten Sie darauf, dass im Sensormenü im Menü *Puffer* der Puffersatz richtig gewählt ist (siehe Abschnitt 10.1.1 EINSTELLUNGEN FÜR PH-MESSUNGEN, Seite 66).

Verwenden Sie in beliebiger Reihenfolge ein bis fünf Pufferlösungen des ausgewählten Puffersatzes.

Im folgenden ist die Kalibrierung mit Technischen Puffern (TEC) beschrieben. Bei anderen Puffersätzen werden andere Puffersollwerte angezeigt. Der Ablauf ist ansonsten identisch.

Ist im Menü die Einpunktkalibrierung eingestellt, wird die Kalibrierung automatisch nach der Messung von Pufferlösung 1 beendet, und das Kalibrierprotokoll angezeigt.

- 1. Den pH-Sensor an das Messgerät anschließen. Das pH-Messfenster wird im Display angezeigt.
- Die Pufferlösungen bereithalten.
 Bei Messung ohne Temperaturmessfühler:
 Pufferlösungen temperieren bzw. aktuelle Temperatur messen.

 Mit <CAL> die Kalibrierung starten. Es erscheint das Kalibrierdisplay f
ür den ersten Puffer (Spannungsanzeige).

- 4. Den Sensor gründlich mit entionisiertem Wasser spülen.
- 5. Den Sensor in die Pufferlösung 1 tauchen.
- Bei Messung ohne Temperaturmessfühler (z. B. über einen IDS-Adapter): Die Temperatur des Puffers mit <▲ ><▼ > eingeben.
- Mit <ENTER> die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.

- Das Ende der Messung mit Stabilitätskontrolle abwarten oder mit
 <ENTER> den Kalibrierwert übernehmen.
 Es erscheint das Kalibrierdisplay für den nächsten Puffer (Spannungsanzeige).
- 9. Gegebenenfalls mit **<M>** die Kalibrierung als Einpunktkalibrierung beenden.

Das Kalibrierprotokoll wird angezeigt.

Für die **Einpunktkalibrierung** verwendet das Gerät die Nernst-Steilheit (-59,2 mV/pH bei 25 °C) und ermittelt den Nullpunkt des IDS-pH-Sensors.

Fortsetzen mit Zweipunktkalibrierung

- 10. Den Sensor gründlich mit entionisiertem Wasser spülen.
- 11. Den Sensor in Pufferlösung 2 tauchen.
- Bei Messung ohne Temperaturmessfühler:
 Die Temperatur des Puffers mit <▲ ><▼ > eingeben.
- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.

 Das Ende der Messung mit Stabilitätskontrolle abwarten oder mit <ENTER> die Stabilitätskontrolle beenden und den Kalibrierwert übernehmen.

Es erscheint das Kalibrierdisplay für den nächsten Puffer (Spannungsanzeige).

15. Gegebenenfalls mit **<M>** die Kalibrierung als Zweipunktkalibrierung beenden.

Das Kalibrierprotokoll wird angezeigt.

Fortsetzen mit Drei- bis Fünfpunktkalibrierung

- 16. Den Sensor gründlich mit entionisiertem Wasser spülen.
- 17. Den Sensor in die nächste Pufferlösung tauchen.
- Bei Messung ohne Temperaturmessfühler:
 Die Temperatur des Puffers mit <▲ ><▼ > eingeben.
- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.

 Das Ende der Messung mit Stabilitätskontrolle abwarten oder mit <ENTER> die Stabilitätskontrolle beenden und den Kalibrierwert übernehmen.

Es erscheint das Kalibrierdisplay für den nächsten Puffer (Spannungsanzeige).

Gegebenenfalls mit <M> die Kalibrierung beenden.
 Das Kalibrierprotokoll wird angezeigt.
 oder

Mit **<ENTER>** zur Kalibrierung mit dem nächsten Puffer wechseln.

Nach Messung des letzten Puffers in einem Puffersatz wird die Kalibrierung automatisch beendet. Anschließend wird das Kalibrierprotokoll angezeigt.

Die Kalibriergerade wird durch lineare Regression ermittelt.

5.2.4 Durchführung einer manuellen Kalibrierung (ConCal)

Achten Sie darauf, dass im Sensormenü im Menü *Puffer* der Puffersatz *ConCal* gewählt ist (siehe Abschnitt 10.1.1 EINSTELLUNGEN FÜR PH-MESSUNGEN, Seite 66).

Verwenden Sie in beliebiger Reihenfolge ein bis fünf Pufferlösungen. Die pH-Werte der Pufferlösungen müssen sich um mindestens eine pH-Einheit unterscheiden.

Ist im Menü die Einpunktkalibrierung eingestellt, wird die Kalibrierung automatisch nach der Messung von Pufferlösung 1 beendet, und das Kalibrierprotokoll angezeigt.

- Den pH-Sensor an das Messgerät anschließen. Das pH-Messfenster wird im Display angezeigt.
- Die Pufferlösungen bereithalten. Bei Messung ohne Temperaturmessfühler: Pufferlösungen temperieren bzw. aktuelle Temperatur messen.
- Mit <CAL> die Kalibrierung starten. Es erscheint das Kalibrierdisplay f
 ür den ersten Puffer (Spannungsanzeige).

- 4. Den Sensor gründlich mit entionisiertem Wasser spülen.
- 5. Den Sensor in Pufferlösung 1 tauchen.
- Bei Messung ohne Temperaturmessfühler (z. B. über einen IDS-Adapter): Die Temperatur des Puffers mit <▲ ><▼ > eingeben.
- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.

 Das Ende der Messung mit Stabilitätskontrolle abwarten oder mit <ENTER> die Stabilitätskontrolle beenden und den Kalibrierwert übernehmen.

Der pH-Wert der Pufferlösung wird angezeigt.

9. Mit <▲ ><▼ > den Puffersollwert für die gemessene Temperatur einstellen.

- 10. Mit **<ENTER>** den Kalibrierwert übernehmen. Es erscheint das Kalibrierdisplay für den nächsten Puffer (Spannungsanzeige).
- 11. Gegebenenfalls mit <M> die Kalibrierung als Einpunktkalibrierung beenden.

Das Kalibrierprotokoll wird angezeigt.

Für die Einpunktkalibrierung verwendet das Gerät die Nernst-Steilheit (-59,2 mV/pH bei 25 °C) und ermittelt den Nullpunkt des IDS-pH-Sensors.

Fortsetzen mit Zweipunktkalibrierung

- 12. Den Sensor gründlich mit entionisiertem Wasser spülen.
- 13. Den Sensor in Pufferlösung 2 tauchen.
- 14. Bei Messung ohne Temperaturmessfühler: Die Temperatur des Puffers mit $< \blacktriangle > < \nabla >$ eingeben.
- Mit **<ENTER>** die Messung starten. 15. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.
- 16. Das Ende der Messung mit Stabilitätskontrolle abwarten oder mit <ENTER> die Stabilitätskontrolle beenden und den Kalibrierwert übernehmen.

Der pH-Wert der Pufferlösung wird angezeigt.

- 17. Mit <▲ ><▼ > den Puffersollwert für die gemessene Temperatur einstellen.
- 18. Mit **<ENTER>** den Kalibrierwert übernehmen. Es erscheint das Kalibrierdisplay für den nächsten Puffer (Spannungsanzeige).
- 19. Gegebenenfalls mit **<M>** die Kalibrierung als Zweipunktkalibrierung beenden.

Das Kalibrierprotokoll wird angezeigt.

Fortsetzen mit Drei-

bis Fünfpunktkalibrierung

- 20. Den Sensor gründlich mit entionisiertem Wasser spülen.
- 21. Den Sensor in die nächste Pufferlösung tauchen.
- 22. Bei Messung ohne Temperaturmessfühler:Die Temperatur des Puffers mit <▲ ><▼ > eingeben.
- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.
- Das Ende der Messung mit Stabilitätskontrolle abwarten oder mit
 <ENTER> die Stabilitätskontrolle beenden und den Kalibrierwert übernehmen.
 Der pH-Wert der Pufferlösung wird angezeigt.

pH Puffer 3 9.958 ↓ 24.8 °C ConCal

- 25. Mit <▲ ><▼ > den Puffersollwert für die gemessene Temperatur einstellen.
- 26. Mit **<ENTER>** den Kalibrierwert übernehmen. Es erscheint das Kalibrierdisplay für den nächsten Puffer (Spannungsanzeige).
- Gegebenenfalls mit <M> die Kalibrierung beenden.
 Das Kalibrierprotokoll wird angezeigt.
 oder

Mit **<ENTER>** die Kalibrierung mit dem nächsten Puffer fortsetzen.

Nach Messung eines fünften Puffers wird die Kalibrierung automatisch beendet. Anschließend wird das Kalibrierprotokoll angezeigt.

Die Kalibriergerade wird durch lineare Regression ermittelt.

5.2.5 Kalibrierpunkte

Die Kalibrierung kann mit ein bis fünf Pufferlösungen in beliebiger Reihenfolge erfolgen (Ein- bis Fünfpunktkalibrierung). Das Messgerät ermittelt folgende Werte und berechnet die Kalibriergerade wie folgt:

Kalibrierung	Ermittelte Werte	Angezeigte Kalibrierdaten
1-Punkt	Asy	 Nullpunkt = Asy Steilheit = Nernst-Steilheit (-59,2 mV/pH bei 25 °C)
2-Punkt	Asy Stg.	 Nullpunkt = Asy Steilheit = Stg.
3- bis 5-Punkt	Asy Stg.	 Nullpunkt = Asy Steilheit = Stg. Die Kalibriergerade wird durch lineare Regression berechnet.

Die Steilheit können Sie in der Einheit mV/pH oder % anzeigen (siehe Abschnitt 10.1.1 EINSTELLUNGEN FÜR PH-MESSUNGEN, Seite 66).

5.2.6 Kalibrierdaten

Das Kalibrierprotokoll wird nach dem Kalibrieren automatisch auf die Schnittstelle übertragen.

Kalibrierdaten anzei-
genDas Kalibrierprotokoll der letzten Kalibrierung finden Sie unter dem Menüpunkt
Kalibrierung / Kalibrierprotokoll. Zum Öffnen in der Messwertansicht die Taste
<CAL_> drücken.

Die Kalibrierprotokolle der letzten 10 Kalibrierungen finden Sie im Menü *Kalibrierung | Kalibrier-Speicher | Anzeigen*. Zum Öffnen des Menüs *Kalibrierung* in der Messwertansicht die Taste **<ENTER>** drücken.

Menüpunkt	Einstellung/ Funktion	Erläuterung
Kalibrierung / Kalibrier-Speicher / Anzeigen	-	 Zeigt die Kalibrierprotokolle an. Weitere Optionen: Mit <▲ ><▼ > blättern Sie durch die Kalibrierprotokolle.
		 Mit <f2>/[USB-Ausgabe] geben Sie das angezeigte Kalibrierpro- tokoll auf die Schnittstelle aus.</f2>
		 Mit <f2_>/[USB-Ausgabe] geben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</f2_>
		 Mit <f1>/[Zurück] oder <enter> verlassen Sie die Anzeige.</enter></f1>
		 Mit <m> wechseln Sie direkt zur Messwertansicht.</m>
Kalibrierung / Kalibrier-Speicher / Ausgabe RS232/USB	-	Gibt den Kalibrier-Speicher auf die Schnittstelle aus

Kalibrierbewertung

Nach dem Kalibrieren bewertet das Messgerät automatisch die Kalibrierung. Nullpunkt und Steilheit werden dabei getrennt bewertet. Die jeweils schlechtere Bewertung wird herangezogen. Die Bewertung erscheint im Display und im Kalibrierprotokoll.

Display	Kalibrierproto- koll	Nullpunkt [mV]	Steilheit [mV/pH]	
	+++	-15 +15	-60,558,0	
	++	-20 <-15 oder >+15 +20	>-58,057,0	
6	+	-25 <-20 oder >+20 +25	-61,0 <-60,5 oder >-57,056,0	
6	-	-30 <-25 oder ->+25 +30	-62,0 <-61,0 oder >-56,050,0	
IDS-Sensor gemäß Sensor-Bedienungsanleitung reinigen				
Error	Error	<-30 oder >+30	<-62,0 oder >-50,0	
Fehlerbehebung (siehe Abschnitt 14 WAS TUN, WENN, Seite 92)				

Für pH-IDS-Sensoren können Sie alternativ eine feiner abgestufte Kalibrierbewertung (QSC) aktivieren (siehe Abschnitt 5.2.8 QSC-FUNKTION (SENSORQUALITÄTSKONTROLLE), Seite 38).

Kalibrierprotokoll (USB-Ausgabe)	Multi 3510 IDS Ser. Nr. 11292113 KALIBRIERUNG pH 01.02.2014 15:55	
	Ser. Nr. 10501234 TECYSI Puffer 1 Puffer 2 Puffer 3 Spannung 1 Spannung 2 Spannung 3 Temperatur 1 Temperatur 2 Temperatur 3 Steigung Asymmetrie Sensor etc	4.01 7.00 10.01 184.0 mV 3.0 mV -177.0 mV 24.0 °C 24.0 °C 24.0 °C 24.0 °C -60.2 mV/pH 4.0 mV +++
5.2.7 Kontinuierliche Messwertkontrolle (CMC-Funktion)

Die kontinuierliche Messwertkontrolle (CMC-Funktion, Continuous Measurement Control) ermöglicht auf einen Blick eine schnelle und sichere Bewertung des aktuellen Messwerts.

Nach jeder erfolgreichen Kalibrierung wird in der Messwertansicht die Skala des pH-Messbereichs angezeigt. Hier ist besonders leicht zu erkennen, ob der aktuelle Messwert im kalibrierten Teil des Messbereichs liegt.

Folgende Informationen werden angezeigt:

Wenn der aktuelle Messwert im nicht kalibrierten Bereich liegt, wird dieser Bereich stärker schraffiert angezeigt.

Wenn ein Messwert außerhalb des Messbereichs pH 0 - 14 liegt, werden Überlaufpfeile am linken oder rechten Rand des Messbereichs angezeigt.

Die Grenzen des kalibrierten Bereichs sind durch die bei der Kalibrierung verwendeten Puffer bestimmt:

Untere Grenze:	Puffer mit niedrigstem pH-Wert - 2 pH-Einheiten
Obere Grenze:	Puffer mit höchstem pH-Wert + 2 pH-Einheiten

5.2.8 QSC-Funktion (Sensorqualitätskontrolle)

Allgemeines zur QSC-Funktion Die QSC-Funktion (Quality Sensor Control) ist eine neue Sensorbewertung für digitale IDS-Sensoren. Dabei wird der Zustand eines IDS-pH-Sensors individuell und sehr fein abgestuft bewertet.

Im Display zeigt die QSC-Skala mit Hilfe eines Zeigers die aktuelle Sensorbewertung an.

Bei USB-Ausgabe wird die Sensorbewertung als Prozentangabe (1-100) dokumentiert.

Die fein abgestufte Sensorbewertung mit der QSC-Funktion macht Sie sehr frühzeitig auf Veränderungen des Sensors aufmerksam.

So können Sie bei Bedarf weitere Maßnahmen treffen, um wieder die optimale Messqualität herzustellen (z. B. Reinigung, Kalibrierung oder Austausch des Sensors).

Sensorbewertung mit / ohne	Mit QSC-Funktion	Ohne QSC-Funktion (Sensorsymbol)
QSC-Funktion	Sehr feine Abstufung der Sensorbe- wertung (100 Stufen)	Grobe Abstufung der Sensorbewer- tung (4 Stufen)
	Der Referenzwert wird für jeden Sen- sor individuell bei der QSC-Erstkalib- rierung ermittelt.	Ein theoretischer Referenzwert wird für alle Sensoren verwendet
	Geringe Toleranzen für Nullpunkt und Steilheit bei Verwendung von QSC-Pufferlösungen	Größere Toleranzen für Nullpunkt und Steilheit bei Verwendung handelsübli- cher Puffersätze
	Zusätzliche QSC-Kalibrierung erfor- derlich (mit speziellem QSC-Puffer- satz)	Keine zusätzliche Kalibrierung erfor- derlich
QSC-Kalibrierung	Die QSC-Funktion wird durch eine eine rung mit speziellen QSC-Pufferlösunge des Sensors von pH 2 bis pH 11 ab. B tatsächliche Zustand des Sensors erm	malige zusätzliche Dreipunkt-Kalibrie- en aktiviert. Sie deckt den Messbereich ei der QSC-Erstkalibrierung wird der ittelt und als Referenz im Sensor abge-

legt.

Um die hohen Anforderungen für eine QSC-Erstkalibrierung zu erfüllen, sollte die QSC-Erstkalibrierung optimalerweise gleich bei Inbetriebnahme des Sensors ausgeführt werden.

Die regulären Kalibrierungen für Ihren speziellen Messbereich führen Sie wie bisher mit Ihren gewohnten Standardlösungen durch.

1.

Sobald die QSC-Funktion für einen IDS-Sensor aktiviert wurde, ist eine Rückkehr zur Sensorbewertung mit Sensorsymbol für diesen Sensor nicht mehr möglich.

QSC-Erstkalibrierung durchführen

- Mit **<ENTER>** das Menü für Messeinstellungen öffnen.
- Im Menü QSC mit <▲ ><▼ > Erstkalibrierung wählen. Das Display zeigt das Kalibrierdisplay. Als Puffer wird AutoCal QSC-Kit angezeigt.

Verwenden Sie für die QSC-Kalibrierung ausschließlich das QSC-Kit. Mit anderen Puffern erhalten Sie keine gültige QSC-Kalibrierung.

 Die Kalibrierung mit den Puffern des QSC-Kit verläuft wie eine reguläre Dreipunktkalibrierung.
 Folgen Sie der Benutzerführung

Folgen Sie der Benutzerführung.

Führen Sie die QSC-Erstkalibrierung mit großer Sorgfalt durch. Hier wird der Referenzwert für den Sensor bestimmt. Dieser Referenzwert kann nicht mehr überschrieben oder rückgesetzt werden. Sobald die QSC-Funktion aktiviert wurde, ist eine Rückkehr zur Sensorbewertung mit Sensorsymbol nicht mehr möglich.

4. Sobald die Dreipunktkalibrierung erfolgreich durchgeführt wurde, können Sie entscheiden, ob Sie die Kalibrierung als QSC-Erstkalibrierung übernehmen oder verwerfen.

Die QSC-Erstkalibrierung ist beendet. Der Sensor ist kalibriert. Wenn Sie für Ihre Messungen mit speziellen Puffern kalibrieren möchten, können Sie anschließend eine reguläre Kalibrierung mit Ihren Puffern durchführen. Auch für die Bewertung regulärer Kalibrierungen werden die bei der QSC-Kalibrierung ermittelten Referenzwerte verwendet. In der Messwertansicht wird immer die QSC-Skala der QSC-Funktion angezeigt. Ein Doppelpfeil zeigt die aktuelle Sensorbewertung auf der QSC-Skala an.

QSC-Kontrollkalibrierung durchführen Eine QSC-Kontrollkalibrierung kann z. B. hilfreich sein, wenn sich die Sensorbewertung (nach einigen regulären Kalibrierungen) deutlich verändert hat.

QSC-Kontrollkalibrierungen können Sie in größeren Abständen durchführen als reguläre Kalibrierungen.

- 1. Mit **<ENTER>** das Menü für Messeinstellungen öffnen.
- Im Menü QSC mit <▲ ><▼ > Kontrollkalibrierung wählen. Das Display zeigt das Kalibrierdisplay. Als Puffer wird AutoCal QSC-Kit angezeigt. Verwenden Sie für die QSC-Kalibrierung ausschließlich das QSC-Kit. Mit anderen Puffern erhalten Sie keine gültige QSC-Kontrollkalibrierung.
- Der Benutzerführung folgen. Die Kalibrierung verläuft wie eine reguläre Dreipunktkalibrierung. Sobald die Dreipunktkalibrierung erfolgreich durchgeführt wurde, können Sie entscheiden, ob Sie die Kalibrierung als QSC-Kontrollkalibrierung übernehmen oder verwerfen.

6 Redoxspannung

- 6.1 Messen
- 6.1.1 Redoxspannung messen

HINWEIS

Bei Anschluss von geerdetem PC/Drucker kann nicht in geerdeten Medien gemessen werden, da fehlerhafte Ergebnisse geliefert werden! Die USB-Schnittstelle ist nicht galvanisch getrennt.

IDS-Redox-Sensoren werden nicht kalibriert. Sie können IDS-Redox-Sensoren jedoch mit einer Prüflösung überprüfen.

- 1. Den Redox-Sensor an das Messgerät anschließen. Das Redox-Messfenster wird im Display angezeigt.
- 2. Messlösung temperieren bzw. aktuelle Temperatur messen, falls die Messung ohne Temperaturmessfühler erfolgt.
- 3. Messlösung temperieren bzw. aktuelle Temperatur messen.
- 4. Messgerät mit Redox-Sensor überprüfen.
- 5. Den Redox-Sensor in die Messlösung eintauchen.

Stabilitätskontrolle (AutoRead) & HOLD-Funktion

Die Funktion Stabilitätskontrolle (*AutoRead*) prüft kontinuierlich die Stabilität des Messsignals. Die Stabilität hat einen wesentlichen Einfluss auf die Reproduzierbarkeit des Messwerts.

Die Messgröße im Display blinkt

- sobald der Messwert den Stabilitätsbereich verlässt
- wenn die automatische Stabilitätskontrolle ausgeschaltet ist.

Unabhängig von der Einstellung für automatische *Stabilitätskontrolle* (siehe Abschnitt 10.6.3 AUTOMATISCHE STABILITÄTSKONTROLLE, Seite 76) im Menü

System können Sie die Funktion Stabilitätskontrolle jederzeit manuell starten.

 Mit <AR> den Messwert einfrieren. Die Statusanzeige [HOLD] wird angezeigt. Die HOLD-Funktion ist aktiv.

Sie können jederzeit die Funktion *Stabilitätskontrolle* und die HOLD-Funktion mit **<AR>** oder **<M>** beenden.

 Mit **<ENTER>** die Funktion *Stabilitätskontrolle* manuell aktivieren. Während der Messwert als nicht stabil bewertet wird, erscheint die Statusanzeige [AR]. Es wird ein Fortschrittsbalken angezeigt und die Anzeige der Messgröße blinkt.

Sobald ein stabiler Messwert erkannt wird, erscheint die Statusanzeige [HOLD][AR]. Der Fortschrittsbalken verschwindet und die Anzeige der Messgröße blinkt nicht mehr.

Die aktuellen Messdaten werden an die Schnittstelle ausgegeben. Messdaten, die das Kriterium für die Stabilitätskontrolle erfüllen, erhalten den Zusatz AR.

Sie können jederzeit die Funktion *Stabilitätskontrolle* mit **<ENTER>** vorzeitig manuell beenden. Bei vorzeitigem Beenden der Funktion *Stabilitätskontrolle* werden die aktuellen Messdaten ohne Auto-Read-Info an die Schnittstelle ausgegeben.

 Mit **<ENTER>** eine weitere Messung mit Stabilitätskontrolle starten. oder

Mit **<AR>** oder **<M>** den eingefrorenen Messwert wieder freigeben. Die Statusanzeige [AR] verschwindet. Das Display wechselt in die vorherige Darstellung zurück.

Kriterien für einen stabilen Messwert

Die Funktion *Stabilitätskontrolle* überprüft, ob die Messwerte in dem überwachten Zeitintervall stabil sind.

Messgröße	Zeitintervall	Stabilität im Zeitintervall
Redoxspannung	15 Sekunden	Δ : besser 0,3 mV
Temperatur	15 Sekunden	Δ : besser 0,5 °C

Die Mindestdauer, bis ein Messwert als stabil bewertet wird, entspricht dem überwachten Zeitintervall. Die tatsächliche Dauer ist meist länger.

6.1.2 Temperatur messen

Für reproduzierbare Redox-Messungen ist die Messung der Temperatur der Messlösung zwingend erforderlich.

Bei Betrieb eines Sensors ohne integrierten Temperaturmessfühler müssen

Sie zunächst die Temperatur der Messlösung ermitteln und eingeben.

Das Messgerät erkennt, ob ein geeigneter Sensor angeschlossen ist und schaltet automatisch die Temperaturmessung zu.

Welche Art der Temperaturmessung aktiv ist, erkennen Sie an der Anzeige der Temperatur:

Temperatur- messfühler	Auflösung der TempAnzeige	TempMessung
ja	0,1 °C	Automatisch mit
		Temperaturmessfühler
-	1 °C	Manuell

6.2 Kalibrieren Redox

Redox-Messketten werden nicht kalibriert. Sie können Redox-Messketten jedoch überprüfen, indem Sie die Redoxspannung einer Prüflösung messen und mit dem Sollwert vergleichen.

7 Sauerstoff

- 7.1 Messen
- 7.1.1 Sauerstoff messen
- 1. Den IDS-Sauerstoffsensor an das Messgerät anschließen. Das Sauerstoff-Messfenster wird im Display angezeigt.
- 2. Gegebenenfalls mit **<M>** die Messgröße wählen.
- 3. Messgerät mit Sensor überprüfen bzw. kalibrieren.

Für den Sauerstoffsensor FDO[®] 925 ist eine Kalibrierung nur noch in Sonderfällen notwendig. Ein regelmäßiger FDO[®] Check ist ausreichend.

4. Den IDS-Sauerstoffsensor in die Messlösung eintauchen.

Angezeigte Messgröße wählen

Mit **<M>** können Sie zwischen folgenden Anzeigen wechseln:

- Sauerstoffkonzentration [mg/l]
- Sauerstoffsättigung [%]
- Sauerstoffpartialdruck [mbar].

Salzgehaltskorrektur

Bei Messung der Sauerstoffkonzentration [mg/l] in Lösungen mit einem Salzgehalt von mehr als 1 g/l ist eine Salzgehaltskorrektur erforderlich. Dazu müssen Sie zunächst die Salinität des Messmediums ermitteln und eingeben.

Bei eingeschalteter Salzgehaltskorrektur ist die Anzeige [Sal] im Messfenster eingeblendet.

Das Ein-/Ausschalten der Salzgehaltskorrektur und das Eingeben der Salinität erfolgen im Menü für Kalibrier- und Messeinstellungen (siehe Abschnitt 10.3.1 EINSTELLUNGEN FÜR SAUERSTOFFSENSOREN (MENÜ FÜR MESS- UND KALIBRIEREINSTELLUNGEN), Seite 70).

Luftdruckkorrektur	Der integrierte Luftdrucksensor des Multi 3510 IDS misst den aktuellen Luft- druck. Der Luftdruck wird automatisch für die Luftdruckkorrektur beim Kali- brieren und bei Anzeige der Messgröße Sauerstoffsättigung [%] verwendet. Den aktuellen Luftdruck können Sie im Sensormenü ansehen, wenn ein IDS Sauerstoffsensor angeschlossen ist. Drücken Sie in der Messwertansicht die Taste <enter></enter> drücken. Der aktuelle Luftdruck wird als Info angezeigt.
Stabilitätskontrolle (AutoRead) & HOLD-Funktion	 Die Funktion Stabilitätskontrolle (<i>AutoRead</i>) prüft kontinuierlich die Stabilität des Messsignals. Die Stabilität hat einen wesentlichen Einfluss auf die Reproduzierbarkeit des Messwerts. Die Messgröße im Display blinkt sobald der Messwert den Stabilitätsbereich verlässt wenn die automatische <i>Stabilitätskontrolle</i> ausgeschaltet ist. Unabhängig von der Einstellung für automatische <i>Stabilitätskontrolle</i> (siehe Abschnitt 10.6.3 AUTOMATISCHE STABILITÄTSKONTROLLE, Seite 76) im Menü <i>System</i> können Sie eine Messung mit <i>Stabilitätskontrolle</i> jederzeit manuell starten. Mit <ar></ar> den Messwert einfrieren. Die Statusanzeige [HOLD] wird angezeigt. Die HOLD-Funktion ist aktiv.

Sie können jederzeit die Funktion *Stabilitätskontrolle* und die HOLD-Funktion mit **<AR>** oder **<M>** beenden.

 Mit **<ENTER>** die Funktion *Stabilitätskontrolle* manuell aktivieren. Während der Messwert als nicht stabil bewertet wird, erscheint die Statusanzeige [AR]. Es wird ein Fortschrittsbalken angezeigt und die Anzeige der Messgröße blinkt.

Sobald ein stabiler Messwert erkannt wird, erscheint die Statusanzeige [HOLD][AR]. Der Fortschrittsbalken verschwindet und die Anzeige der Messgröße blinkt nicht mehr.

Die aktuellen Messdaten werden an die Schnittstelle ausgegeben. Messdaten, die das Kriterium für die Stabilitätskontrolle erfüllen, erhalten den Zusatz AR.

Sie können jederzeit die Funktion *Stabilitätskontrolle* mit **<ENTER>** vorzeitig manuell beenden. Bei vorzeitigem Beenden der Funktion *Stabilitätskontrolle* werden die aktuellen Messdaten ohne Auto-Read-Info an die Schnittstelle ausgegeben.

3. Mit **<ENTER>** eine weitere Messung mit Stabilitätskontrolle starten. oder

Mit **<AR>** oder **<M>** den eingefrorenen Messwert wieder freigeben. Die Statusanzeige [AR] verschwindet. Das Display wechselt in die vorherige Darstellung zurück.

Kriterien für einen stabilen Messwert

Die Funktion *Stabilitätskontrolle* überprüft, ob die Messwerte in dem überwachten Zeitintervall stabil sind.

Messgröße	Zeitintervall	Stabilität im Zeitintervall
Sauerstoffkonzentration	20 Sekunden	∆ : besser 0,03 mg/l
Sauerstoffsättigung	20 Sekunden	Δ : besser 0,4 %
Sauerstoffpartialdruck	20 Sekunden	Δ : besser 0,8 mbar
Temperatur	15 Sekunden	Δ : besser 0,5 °C

Die Mindestdauer, bis ein Messwert als stabil bewertet wird, entspricht dem überwachten Zeitintervall. Die tatsächliche Dauer ist meist länger.

7.1.2 Temperatur messen

Für reproduzierbare Sauerstoff-Messungen ist die Messung der Temperatur der Messlösung zwingend erforderlich.

IDS-Sauerstoffsensoren messen die Temperatur durch einen im IDS-Sensor integrierten Temperaturmessfühler.

7.2 FDO[®] Check (Überprüfung des FDO[®] 925)

7.2.1 Warum überprüfen?

Mit dem FDO[®] Check (Überprüfung) können Sie auf einfache Weise feststellen, ob eine Reinigung oder Kalibrierung des Sauerstoffsensors FDO[®] 925 erforderlich ist.

7.2.2 Wann überprüfen?

Eine Überprüfung kann in folgenden Fällen hilfreich sein:

- Wenn das Check-Intervall abgelaufen ist (Die Statusanzeige [check] wird angezeigt.)
- Wenn die Messwerte unplausibel erscheinen
- Wenn der Verdacht besteht, dass die Sensorkappe verschmutzt oder am Ende ihrer Lebensdauer ist
- Nach einem Wechsel der Sensorkappe
- Routinemäßig im Rahmen einer betrieblichen Qualitätssicherung.

7.2.3 FDO[®] Check durchführen

FDO[®] Check-Verfahren

 ck- Überprüfung in wasserdampfgesättigter Luft.
 ren Verwenden Sie für den FDO[®] Check das Prüf- und Aufbewahrungsgefäß FDO[®] Check. Stabilitätskontrolle
(AutoRead)Beim FDO[®] Check wird automatisch die Funktion Stabilitätskontrolle (Auto-
Read) aktiviert.

Gehen Sie wie folgt vor, um den FDO[®] Check durchzuführen:

- 1. Den Sauerstoffsensor an das Messgerät anschließen.
- 2. Den Sauerstoffsensor in das Prüf- und Aufbewahrungsgefäß FDO[®] Check stecken.

Der Schwamm im Prüf- und Aufbewahrungsgefäß muss feucht sein (nicht nass). Lassen Sie den Sensor zur Anpassung an die Umgebungstemperatur ausreichend lang im Prüf- und Aufbewahrungsgefäß.

3. Im Messmenü mit *FDO Check / Start FDO Check* den FDO[®] Check starten.

Das Gerät wechselt zur Messgröße %.

- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.
- Das Ende der AutoRead-Messung abwarten (Statusanzeige [HOLD][AR]) oder mit <ENTER> den Messwert übernehmen. Der Messwert wird eingefroren.
- Mit <M> zur Messwertansicht wechseln.
 Die Prüfmessung wird nicht dokumentiert.

7.2.4 Bewertung

Grundlage für die Bewertung ist eine vom Anwender geforderte Genauigkeit. Zusammen mit dem Sollwert (100 %) ergibt sich daraus ein Gültigkeitsbereich für die Überprüfung.

Liegt der Messwert innerhalb des Gültigkeitsbereichs, ist keine Reinigung oder Anwenderkalibrierung erforderlich.

Liegt der Messwert ausserhalb des Gültigkeitsbereichs, sollte der Sensorschaft und die Membran gereinigt werden, und anschließend die Überprüfung wiederholt werden (siehe Abschnitt 5.4.1).

Beispiel:

- Geforderte Genauigkeit: ± 2 %.
- In wasserdampfgesättigter Luft bzw. in luftgesättigtem Wasser beträgt der Sollwert für die relative Sauerstoffsättigung (kurz: Sättigung) 100 %.
- Der Gültigkeitsbereich beträgt demnach 98 bis 102 %
- Die Überprüfung ergibt einen Messwert von 99,3 %

Der Messfehler liegt innerhalb des festgelegten Gültigkeitsbereichs. Eine Reinigung oder Anwenderkalibrierung ist nicht erforderlich.

7.3 Kalibrieren

7.3.1 Warum kalibrieren?

Sauerstoffsensoren altern. Dabei verändert sich die Steilheit des Sauerstoffsensors. Durch das Kalibrieren wird die aktuelle Steilheit des Sensors ermittelt und im Messgerät abgespeichert.

Die Alterung des Sauerstoffsensors FDO[®] 925 ist so gering, dass eine regelmäßige Kalibrierung nicht mehr erforderlich ist. Um Veränderungen des Sensors frühzeitig zu erkennen, kann eine Überprüfung mit dem FDO[®] Check hilfreich sein (siehe Abschnitt 7.2 FDO[®] CHECK (ÜBERPRÜFUNG DES FDO[®] 925), Seite 46).

7.3.2 Wann kalibrieren?

- Wenn Ihre Bewertung des FDO[®] Check eine Kalibrierung nahelegt
- Wenn das Kalibrierintervall abgelaufen ist
- Wenn besonders hohe Ansprüche an die Genauigkeit der Messdaten bestehen
- Routinemäßig im Rahmen einer betrieblichen Qualitätssicherung.

7.3.3 Kalibrierverfahren

Mit dem Multi 3510 IDS stehen 2 Kalibrierverfahren zur Verfügung:

- Kalibrierung in wasserdampfgesättigter Luft. Verwenden Sie zum Kalibrieren ein OxiCal[®]-Luftkalibriergefäß.
- Kalibrierung über eine Vergleichsmessung (z. B. Winkler-Titration nach DIN EN 25813 bzw. ISO 5813). Dabei wird die relative Steilheit über einen Korrekturfaktor an die Vergleichsmessung angepasst. Bei aktivem Korrekturfaktor erscheint die Anzeige [Factor] im Messfenster.

7.3.4 Kalibrierung in wasserdampf-gesättigter Luft

Verwenden Sie zum Kalibrieren des FDO[®] 925 das Prüf- und Aufbewahrungsgefäß FDO[®] Check.

Gehen Sie wie folgt vor, um den Sauerstoffsensor zu kalibrieren:

- 1. Den Sauerstoffsensor an das Messgerät anschließen.
- 2. Den Sauerstoffsensor FDO[®] 925 in das Prüf- und Aufbewahrungsgefäß FDO[®] Check stecken.

Der Schwamm im Prüf- und Aufbewahrungsgefäß muss feucht sein (nicht nass). Lassen Sie den Sensor zur Anpassung an die Umgebungstemperatur ausreichend lang im Prüf- und Aufbewahrungsgefäß.

3. Mit **<CAL>** die Kalibrierung starten.

Die letzten Kalibrierdaten (relative Steilheit) werden angezeigt.

- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.
- Das Ende der AutoRead-Messung abwarten (Statusanzeige [HOLD][AR]).
 Das Kalibrierprotokoll wird angezeigt und auf die Schnittstelle ausgegeben.
- 6. Mit **<ENTER>** zur Messwertansicht wechseln.

7.3.5 Kalibrieren über Vergleichsmessung (FDO Comp)

Für dieses Kalibrierverfahren muss die Einstellung *Vergleichsmessung* im Menü *Kalibrierung* auf *ein* gesetzt sein.

Vor dem Kalibrieren über Vergleichsmessung sollte der Sensor im Luftkalibriergefäß kalibriert werden.

Gehen Sie wie folgt vor, um das Gerät zu kalibrieren:

- 1. Sauerstoffsensor an das Messgerät anschließen.
- 2. Sauerstoffsensor in die Vergleichslösung tauchen.
- 3. Mit **<CAL>** die Kalibrierung starten.

- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.
- 5. Ende der AutoRead-Messung abwarten oder mit **<ENTER>** den Kalibrierwert übernehmen.

Der zuletzt eingestellte Faktor wird angezeigt.

 Mit <▲ > <▼ > den Korrekturfaktor so einstellen, dass der angezeigte Konzentrationswert dem Sollwert (Wert der Vergleichsmessung) entspricht. Anschließend Korrekturfaktor mit <ENTER> übernehmen. Das Messgerät wechselt zur Messwertansicht. Die Statusanzeige [Factor] ist aktiv.

7.3.6 Kalibrierdaten

Das Kalibrierprotokoll wird nach dem Kalibrieren automatisch auf die Schnittstelle übertragen.

Kalibrierprotokoll anzeigen

Das Kalibrierprotokoll der letzten Kalibrierung finden Sie unter dem Menüpunkt *Kalibrierung / Kalibrierprotokoll.* Zum Öffnen in der Messwertansicht die Taste **<CAL__>** drücken.

Die Kalibrierprotokolle der letzten 10 Kalibrierungen finden Sie im Menü *Kalibrierung | Kalibrier-Speicher | Anzeigen*. Zum Öffnen des Menüs *Kalibrierung* in der Messwertansicht die Taste **<ENTER>** drücken.

Menüpunkt	Einstellung/ Funktion	Erläuterung
Kalibrierung / Kalibrier-Speicher / Anzeigen	-	Zeigt die Kalibrierprotokolle an. Weitere Optionen: ● Mit <▲ ><▼ > blättern Sie durch die Kalibrierprotokolle.
		 Mit <f2>/[USB-Ausgabe] geben Sie das angezeigte Kali- brierprotokoll auf die Schnitt- stelle aus.</f2>
		 Mit <f2_>/[USB-Ausgabe] geben Sie alle Kalibrierproto- kolle auf die Schnittstelle aus.</f2_>
		 Mit <f1>/[Zurück] oder</f1> <enter> verlassen Sie die Anzeige.</enter>
		 Mit <m> wechseln Sie direkt zur Messwertansicht.</m>
Kalibrierung / Kalibrier-Speicher / Ausgabe RS232/USB	-	Gibt den Kalibrier-Speicher auf die Schnittstelle aus

Kalibrierbewertung

Nach dem Kalibrieren bewertet das Messgerät automatisch den aktuellen Zustand der Kalibrierung. Die Bewertung erscheint im Display und im Kalibrierprotokoll.

Kalibrierbewertung FDO[®] 925

Display	Kalibrierprotokoll	relative Steilheit
() 	+++	S = 0,94 1,06
6	++	S = 0,92 0,94 oder S = 1,06 1,08

Display	Kalibrierprotokoll	relative Steilheit
6	+	S = 0,90 0,92 oder S = 1,08 1,10
Error	Error	S < 0,90
Fehlerbehebung (siehe Abschnitt 14 Was TUN, WENN, Seite 92)		oder S > 1,10

Kalibrierprotokoll (USB-Ausgabe)

KALIBRIERUNG OX 03.04.2013 07:43:33 FDO 925 Ser. Nr. 10146858 SC-FDO 925 10158765 Rel. Steilheit 0.98 Sensor +++

8 Leitfähigkeit

8.1 Messen

8.1.1 Leitfähigkeit messen

HINWEIS

Bei Anschluss von geerdetem PC/Drucker kann nicht in geerdeten Medien gemessen werden, da fehlerhafte Ergebnisse geliefert werden! Die USB-Schnittstelle ist nicht galvanisch getrennt.

- Den Leitfähigkeitssensor an das Messgerät anschließen. Das Leitfähigkeitsmessfenster wird im Display angezeigt. Messzelle und Zellenkonstante für den angeschlossenen IDS-Leitfähigkeitssensor werden automatisch übernommen.
- 2. Gegebenenfalls mit **<M>** die Messgröße x wählen.
- 3. Den Leitfähigkeitssensor in die Messlösung eintauchen.

Angezeigte Messgröße wählen Mit **<M>** können Sie zwischen folgenden Anzeigen wechseln:

- Leitfähigkeit [μS/cm] / [mS/cm]
- Spezifischer Widerstand $[\Omega \cdot cm] / [k\Omega \cdot cm] / [M\Omega \cdot cm]$
- Salinität Sal []
- Filtrattrockenrückstand TDS [mg/l] / [g/l]

Der Faktor für die Berechnung des Filtrattrockenrückstands ist werkseitig auf 1,00 eingestellt. Sie können diesen Faktor für Ihre Zwecke im Bereich von 0,40 bis 1,00 anpassen. Die Einstellung des Faktors erfolgt im Menü für die Messgröße TDS.

Stabilitätskontrolle (AutoRead) & HOLD-Funktion

Die Funktion Stabilitätskontrolle (*AutoRead*) prüft kontinuierlich die Stabilität des Messsignals. Die Stabilität hat einen wesentlichen Einfluss auf die Reproduzierbarkeit des Messwerts.

Die Messgröße im Display blinkt

- sobald der Messwert den Stabilitätsbereich verlässt
- wenn die automatische Stabilitätskontrolle ausgeschaltet ist.

Unabhängig von der Einstellung für automatische *Stabilitätskontrolle* (siehe Abschnitt 10.6.3 AUTOMATISCHE STABILITÄTSKONTROLLE, Seite 76) im Menü *System* können Sie die Funktion *Stabilitätskontrolle* jederzeit manuell starten.

 Mit <AR> den Messwert einfrieren. Die Statusanzeige [HOLD] wird angezeigt. Die HOLD-Funktion ist aktiv.

Sie können jederzeit die Funktion *Stabilitätskontrolle* und die HOLD-Funktion mit **<AR>** oder **<M>** beenden.

2. Mit **<ENTER>** die Funktion *Stabilitätskontrolle* manuell aktivieren. Während der Messwert als nicht stabil bewertet wird, erscheint die Statusanzeige [AR]. Es wird ein Fortschrittsbalken angezeigt und die Anzeige der Messgröße blinkt.

Sobald ein stabiler Messwert erkannt wird, erscheint die Statusanzeige [HOLD][AR]. Der Fortschrittsbalken verschwindet und die Anzeige der Messgröße blinkt nicht mehr.

Die aktuellen Messdaten werden an die Schnittstelle ausgegeben. Messdaten, die das Kriterium für die Stabilitätskontrolle erfüllen, erhalten den Zusatz AR.

Sie können jederzeit die Funktion *Stabilitätskontrolle* mit **<ENTER>** vorzeitig manuell beenden. Bei vorzeitigem Beenden der Funktion *Stabilitätskontrolle* werden die aktuellen Messdaten ohne Auto-Read-Info an die Schnittstelle ausgegeben.

3. Mit **<ENTER>** eine weitere Messung mit Stabilitätskontrolle starten. oder

Mit **<AR>** oder **<M>** den eingefrorenen Messwert wieder freigeben. Die Statusanzeige [AR] verschwindet. Das Display wechselt in die vorherige Darstellung zurück.

Kriterien für einen D stabilen Messwert te

Die Funktion *Stabilitätskontrolle* überprüft, ob die Messwerte in dem überwachten Zeitintervall stabil sind.

Messgröße	Zeitintervall	Stabilität im Zeitintervall
Leitfähigkeit x	10 Sekunden	Δ x: besser 1,0 % vom Messwert
Temperatur	15 Sekunden	Δ : besser 0,5 °C

Die Mindestdauer, bis ein Messwert als stabil bewertet wird, entspricht dem überwachten Zeitintervall. Die tatsächliche Dauer ist meist länger.

8.1.2 Temperatur messen

Für reproduzierbare Leitfähigkeits-Messungen ist die Messung der Temperatur der Messlösung zwingend erforderlich.

IDS-Sensoren messen die Temperatur durch einen im IDS-Sensor integrierten Temperaturmessfühler.

8.2 Temperaturkompensation

Basis für die Berechnung der Temperaturkompensation ist die voreingestellte Referenztemperatur 20 °C oder 25 °C. Sie wird im Display mit *Tr20* oder *Tr25* angezeigt.

Sie können unter folgenden Methoden der Temperaturkompensation wählen:

- Nicht lineare Temperaturkompensation (nLF) nach EN 27 888
- Lineare Temperaturkompensation (Lin) mit einstellbarem Koeffizienten von 0,000 ... 3,000 %/K
- Keine Temperaturkompensation (off)

Das Einstellen von Referenztemperatur und Temperaturkompensation erfolgt im Menü für die Messgröße Leitfähigkeit (siehe Abschnitt 10.4.1 EINSTELLUNGEN FÜR IDS-LEITFÄHIGKEITSSENSO-REN, Seite 72).

Anwendungstipps

Um mit den in der Tabelle angegebenen Messlösungen zu arbeiten, stellen Sie folgende Temperaturkompensationen ein:

Messlösung	Temperaturkompensation	Displayanzeige
Natürliche Wässer (Grund-, Oberflächen-, Trinkwasser)	<i>nLF</i> nach EN 27 888	nLF
Reinstwasser	<i>nLF</i> nach EN 27 888	nLF
Sonstige wässrige Lösungen	<i>Lin</i> Temperaturkoeffizienten 0,000 10,000 %/K einstellen	Lin
Salinität (Meerwasser)	Automatisch <i>nLF</i> nach IOT (International Oceanographic Tables)	Sal, nLF

8.3 Kalibrieren

8.3.1 Warum kalibrieren?

Durch Alterung verändert sich die Zellenkonstante geringfügig, z. B. durch Ablagerungen. Als Folge wird ein ungenauer Messwert angezeigt. Die

ursprünglichen Eigenschaften der Zelle können oft durch Reinigen wiederhergestellt werden. Durch das Kalibrieren wird der aktuelle Wert für die Zellenkonstante ermittelt und im Messgerät abgespeichert. Kalibrieren Sie deshalb in regelmäßigen Abständen.

8.3.2 Wann kalibrieren?

- Nach Anschließen eines Sensors
- Routinemäßig im Rahmen einer betrieblichen Qualitätssicherung.
- Wenn das Reinigungsintervall abgelaufen ist

8.3.3 Zellenkonstante bestimmen (Kalibrierung im Kontrollstandard)

Sie können die tatsächliche Zellenkonstante des IDS-Leitfähigkeitssensors durch eine Kalibrierung im Kontrollstandard in folgendem Bereich bestimmen: 0,450 cm⁻¹ ... 0,500 cm⁻¹ (z. B. TetraCon 925, nominale Zellenkonstante 0,475 cm⁻¹)

Die Bestimmung der Zellenkonstante erfolgt im Kontrollstandard 0,01 mol/l KCl.

Die kalibrierte Zellenkonstante des IDS-Sensors ist im Lieferzustand auf 0,475 cm⁻¹ (IDS-Leitfähigkeitssensor TetraCon 925) eingestellt.

Für dieses Kalibrierverfahren muss die Einstellung *Typ* auf *cal* gesetzt sein. Gehen Sie wie folgt vor, um die Zellenkonstante zu bestimmen:

- 1. Den Leitfähigkeitssensor an das Messgerät anschließen.
- Mit <M> in der Messwertansicht die Messgröße Leitfähigkeit auswählen.
- Mit <CAL> die Kalibrierung starten. Die zuletzt kalibrierte Zellenkonstante wird angezeigt.

4. Den Leitfähigkeitssensor in die Kontrollstandardlösung 0,01 mol/l KCI tauchen.

- Mit **<ENTER>** die Messung starten. Der Messwert wird auf Stabilität geprüft (Stabilitätskontrolle). Die Statusanzeige [AR] wird angezeigt. Die Messgröße blinkt.
- Das Ende der Messung mit Stabilitätskontrolle abwarten (Statusanzeige [HOLD][AR]) oder mit <ENTER> den Kalibrierwert übernehmen. Das Kalibrierprotokoll wird angezeigt und auf die Schnittstelle ausgegeben.
- 7. Mit **<ENTER>** zur Messwertansicht wechseln.

8.3.4 Kalibrierdaten

Das Kalibrierprotokoll wird nach dem Kalibrieren automatisch auf die Schnittstelle übertragen.

Sie können die Kalibrierdaten anzeigen und anschließend auf die Schnittstelle ausgeben.

Kalibrierprotokoll anzeigen

Das Kalibrierprotokoll der letzten Kalibrierung finden Sie unter dem Menüpunkt *Kalibrierung / Kalibrierprotokoll.* Zum Öffnen in der Messwertansicht die Taste **<CAL__>** drücken.

Die Kalibrierprotokolle der letzten 10 Kalibrierungen finden Sie im Menü Kalibrierung / Kalibrier-Speicher / Anzeigen. Zum Öffnen des Menüs Kalibrierung in der Messwertansicht die Taste **<ENTER>** drücken.

Menüpunkt	Einstellung/ Funktion	Erläuterung
Kalibrierung / Kalibrier-Speicher/ Anzeigen	-	 Zeigt die Kalibrierprotokolle an. Weitere Optionen: Mit <▲ ><▼ > blättern Sie durch die Kalibrierprotokolle. Mit <f2>/[USB-Ausgabe] geben Sie das angezeigte Kalibrierprotokoll auf die Schnittstelle aus.</f2> Mit <f2_>/[USB-Ausgabe] geben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</f2_> Mit <f2_>/[USB-Ausgabe] geben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</f2_> Mit <f2_>/[USB-Ausgabe] geben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</f2_> Mit <f1>/[Zurück] oder <enter> verlassen Sie die Anzeige.</enter></f1> Mit <m> wechseln Sie direkt zur Messwertansicht.</m>

Menüpunkt	Einstellung/ Funktion	Erläuterung
Kalibrierung / Kalibrier-Speicher/ Ausgabe RS232/ USB	-	Gibt den Kalibrier-Speicher auf die Schnittstelle aus

Kalibrierbewertung Nach dem Kalibrieren bewertet das Messgerät automatisch den aktuellen Zustand der Kalibrierung. Die Bewertung erscheint im Display und im Kalibrierprotokoll.

Display	Kalibrierprotokoll	Zellenkonstante [cm ⁻¹]
6 	+++	innerhalb des Bereichs 0,450 0,500 cm ⁻¹
Error	Error	außerhalb des Bereichs
Fehlerbehebung (siehe Abschnitt 14 WAS TUN, WENN, Seite 92).		0,450 0,500 cm ⁻ '

Kalibrierprotokoll (USB-Ausgabe)

KALIBRIERUNG Cond 03.04.2013 07:43:33 TetraCon 925 Ser. Nr. 09250033

Zellenkonstante

Sensor

0.476 1/cm 25.0 °C +++

9 Trübungsmessung (VisoTurb[®] 900-P)

9.1 Messen

9.1.1 Trübung messen

Sensoranschluss und die Schnittstelle USB-B (Device) sind galvanisch getrennt. Eine störungsfreie Messung ist damit auch in folgenden Fällen möglich:

- Messung in geerdeten Messmedien
- Messung mit mehreren Sensoren an einem Multi 3510 IDS in einem Messmedium

VorbereitendeFühren Sie folgende vorbereitende Tätigkeiten aus, wenn Sie messen möch-
ten:Tätigkeitenten:

- Vermeiden Sie Gasblasen (z. B. Luftblasen) im Messmedium.
- Verwenden Sie geeignete Mess- und Kalibriergefäße (siehe Bedienungsanleitung zum Sensor VisoTurb[®] 900-P).
- Beachten Sie die Mindesteintauchtiefe für den Sensor
- Trübungsssensor an das Messgerät anschließen. Das Trübungsmessfenster wird im Display angezeigt. Die Daten für den angeschlossenen IDS-Trübungssensor werden automatisch übernommen.
- 2. Füllen Sie die Messlösung in ein lichtundurchlässiges Messgefäß bis zu einem Füllstand von mindestens 6 cm.
- 3. Halten Sie den Sensor beim Eintauchen in die Messlösung schräg.
- 4. Richten Sie den eingetauchten Sensor zum Messen senkrecht auf.
- 5. Positionieren Sie den Sensor so, dass folgende Bedingungen erfüllt sind.
 - Abstand zum Boden: 6 cm
 - Abstand zu Gefäßwänden: 2 cm
 - Mindesteintauchtiefe: 2 cm

Um den Sensor während der Messung optimal und dauerhaft zu positionieren, befestigen Sie ihn an einem Stativ.

Messen So können Sie Trübungsmessungen durchführen:

1. Vorbereitende Tätigkeiten ausführen.

2. Trübungssensor schräg in die Messlösung eintauchen und dann im Messgefäß positionieren.

Angezeigte Messgröße wählen Mit **<M>** können Sie zwischen folgenden Anzeigen wechseln:

Messwert einfrieren (HOLD-Funktion) Mit der HOLD-Funktion frieren Sie den aktuellen Messwert ein. Der angezeigte Messwert ändert sich nicht mehr, bis Sie die HOLD-Funktion wieder ausschalten.

 Mit <AR> den Messwert einfrieren. Die Statusanzeige [HOLD] wird angezeigt.

Trübung [FNU]

Trübung [NTU]

Bei aktiver HOLD-Funktion können Sie z. B. eine manuelle Messung mit Stabilitätskontrolle starten.

 Mit <AR> den eingefrorenen Messwert wieder freigeben. Die Funktion HOLD ist ausgeschaltet. Die Statusanzeige [HOLD] verschwindet.

Stabilitätskontrolle
(AutoRead)Die Funktion Stabilitätskontrolle (AutoRead) prüft kontinuierlich die Stabilität
des Messsignals. Die Stabilität hat einen wesentlichen Einfluss auf die Repro-
duzierbarkeit des Messwerts. Die Anzeige der Messgröße blinkt, bis ein stabi-
ler Messwert vorliegt.

Unabhängig von der Einstellung für automatische *Stabilitätskontrolle* (siehe Abschnitt 10.6.3 AUTOMATISCHE STABILITÄTSKONTROLLE, Seite 76) im Menü *System* können Sie die Funktion *Stabilitätskontrolle* jederzeit manuell starten.

 Mit <AR> den Messwert einfrieren. Die Statusanzeige [HOLD] wird angezeigt. Mit **<ENTER>** die Funktion *Stabilitätskontrolle* manuell aktivieren. Während der Messwert als nicht stabil bewertet wird, erscheint die Statusanzeige [AR]. Es wird ein Fortschrittsbalken angezeigt und die Anzeige der Messgröße blinkt. Sobald ein stabiler Messwert erkannt wird, erscheint die Statusanzeige [HOLD][AR]. Der Fortschrittsbalken verschwindet und die Anzeige der Messgröße blinkt nicht mehr. Die aktuellen Messdaten werden an die Schnittstelle ausgegeben.

Messdaten, die das Kriterium für die Stabilitätskontrolle erfüllen, erhalten den Zusatz AR.

Sie können jederzeit die Funktion *Stabilitätskontrolle* mit **<ENTER>** vorzeitig manuell beenden. Bei vorzeitigem Beenden der Funktion *Stabilitätskontrolle* werden die aktuellen Messdaten ohne AutoRead-Info an die Schnittstelle ausgegeben.

3. Mit **<ENTER>** eine weitere Messung mit *Stabilitätskontrolle* starten. oder

Mit **<AR>** den eingefrorenen Messwert wieder freigeben. Das Display wechselt in die Messwertansicht. Die Statusanzeige [AR][HOLD] verschwindet.

Kriterien für einen stabilen Messwert

Die Funktion Stabilitätskontrolle überprüft, ob die Messwerte in dem überwachten Zeitintervall stabil sind.

Messgröße	Zeitintervall	Stabilität im Zeitintervall
Trübung (FNU/NTU)	15 Sekunden	Δ : besser 1,0 % vom Messwert

Die Mindestdauer, bis ein Messwert als stabil bewertet wird, entspricht dem überwachten Zeitintervall. Die tatsächliche Dauer ist meist länger.

9.2 Kalibrieren

9.2.1 Warum kalibrieren?

Durch das Kalibrieren wird die Kalibrierkurve des Sensors ermittelt und abgespeichert.

9.2.2 Wann kalibrieren?

- Wenn das Kalibrierintervall abgelaufen ist
- In regelmäßigen Abständen

9.2.3 Kalibrierstandards

Kalibrieren Sie mit 1 bis 3 Trübungsstandardlösungen. Die Standardlösungen müssen in folgender Reihenfolge gewählt werden.

Standardlösung	Bereich (FNU/NTU)	
1	0,0 1,0	
2	5,0 200,0	
3	200,0 4000,0	

Die zu erwartende Trübung bei der Messung bestimmt die Anzahl und Auswahl der Standards. Die Kalibrierung ist für den Bereich mit der höchsten zu erwartenden Trübung und für alle niedrigeren Bereiche durchzuführen. Dabei müssen die Standards in aufsteigender Reihenfolge gewählt werden, beginnend mit Standard 1.

Beispiel: Für zu erwartende Trübungswerte im Bereich von 200 ... 4000 FNU/NTU muss eine 3-Punkt-Kalibrierung durchgeführt werden.

Die Messgenauigkeit ist u.a. abhängig von den ausgewählten Standardlösungen. Die gewählten Standardlösungen sollten daher den erwarteten Wertebereich der Trübungsmessung abdecken.

Liegt die gemessene Trübung außerhalb des Messbereichs wird OFL angezeigt.

Als Standard mit Trübungswert 0,0 FNU kann je nach Qualitätsanspruch sauberes Leitungswasser oder filtriertes, deionisiertes Wasser in einem geeigneten Kalibriergefäß (siehe Bedienungsanleitung zum Sensor VisoTurb[®] 900-P) verwendet werden. Dieser Standard sollte vor jeder Kalibrierung frisch bereitgestellt werden. Geeignete Flaschen finden Sie in der Preisliste zum WTW-Katalog "Messtechnik für Labor und Umwelt".

Die Standards mit Trübungswerten für die Kalibrierbereiche 2 und 3 erhalten Sie als Zubehör (siehe Preisliste zum WTW-Katalog "Messtechnik für Labor und Umwelt"). Die Kalibrierung können Sie direkt in den Flaschen durchführen, in denen die Standards geliefert werden. Die Standards können im Rahmen ihrer Haltbarkeit mehrmals verwendet werden.

Ersetzen Sie Standardlösungen bei Zweifeln an der Qualität oder nach Ablauf der Haltbarkeit.

9.2.4 Kalibrierung durchführen

- 1. Vorbereitende Tätigkeiten ausführen.
- 2. Trübungssensor an das Messgerät anschließen. Das TRB-Messfenster wird im Display angezeigt.
- 3. Standardlösungen in geeigneten Kalibriergefäßen bereithalten.

- 4. Mit <▲ > <▼ > und <M> in der Messwertanzeige das Messfenster TRB auswählen.
- 5. Mit **<CAL>** die Kalibrierung starten. Es erscheint das Kalibrierdisplay.

- 6. Trübungssensor gründlich mit destilliertem Wasser spülen und mit einem fusselfreien Tuch abtrocknen.
- 7. Trübungssensor schräg in die Messlösung eintauchen.
- 8. Trübungssensor im Messgefäß positionieren.
- 9. Mit <▲ > <▼ > und <F2>/[▶] die Konzentration der Standardlösung für jede Stelle einstellen und <ENTER> bestätigen. Der Standard wird gemessen. Der Messwert wird auf Stabilität geprüft (AutoRead).
- 10. Ende der AutoRead-Messung abwarten. Das Kalibrierdisplay für die nächste Standardlösung erscheint.

Fortsetzen mit Zweipunktkalibrierung

- 11. Trübungssensor gründlich mit destilliertem Wasser spülen und mit einem fusselfreien Tuch abtrocknen.
- 12. Trübungssensor schräg in die Messlösung eintauchen.
- 13. Trübungssensor im Messgefäß positionieren.

- Mit <▲ > <▼ > und <F2>/[▶] die Konzentration der Standardlösung für jede Stelle einstellen und <ENTER> bestätigen. Der Standard wird gemessen. Der Messwert wird auf Stabilität geprüft (AutoRead).
- 15. Ende der AutoRead-Messung abwarten. Das Kalibrierdisplay für die nächste Standardlösung erscheint.

 Mit <M> die Kalibrierung als Zweipunktkalibrierung beenden. Die neuen Kalibrierwerte werden angezeigt. oder Weiter zur 3-Punkt-Kalibrierung.

Fortsetzen mit
Dreipunkt-
kalibrierungWiederholen Sie die Schritte 11 bis 15 mit der dritten Standardlösung. Nach
Beendigung des letzten Kalibrierschritts werden die neuen Kalibrierwerte
angezeigt.

9.2.5 Kalibrierdaten

Kalibrierdaten
anzeigenDas Kalibrierprotokoll der letzten Kalibrierung finden Sie unter dem Menüpunkt

<ENTER> / Kalibrierung / Kalibrierprotokoll. Zum schnellen Öffnen in der
Messwertansicht die Taste <CAL_> drücken.

Die Kalibrierprotokolle der letzten 10 Kalibrierungen finden Sie im Menü Kalibrierung / Kalibrier-Speicher / Anzeigen. Zum Öffnen des Menüs Kalibrierung in der Messwertansicht die Taste **<ENTER>** drücken.

Menüpunkt	Einstellung/ Funktion	Erläuterung
Kalibrierung / Kalibrier-Speicher/ Anzeigen		 Zeigt das Kalibrierprotokoll an. Weitere Optionen: Mit <◀ ><▶ > blättern Sie durch die Kalibrierprotokolle. Mit <prt> geben Sie das angezeigte Kalibrierprotokoll auf die Schnittstelle aus.</prt> Mit <prt> geben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</prt> Mit <prt_> geben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</prt_> Mit <prt_> deben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</prt_> Mit <prt_> deben Sie alle Kalibrierprotokolle auf die Schnittstelle aus.</prt_> Mit <prt_> deben Sie die Schnittstelle aus.</prt_> Mit <prt_> wechseln Sie direkt zur Messwertansicht.</prt_>
Kalibrierung / Kalibrier-Speicher/ Ausgabe RS232/ USB	-	Gibt die Kalibrierprotokolle auf die Schnittstelle aus.

Kalibrierbewertung Nach dem Kalibrieren bewertet das Messgerät automatisch die Kalibrierung.

Display	Kalibrierprotokoll	Erläuterung
6	+++	Optimale Kalibrierung
6		Gute Kalibrierung

Kalibrierprotokoll (USB-Ausgabe)

VisoTurb 900-P Ser. Nr. 14E999003		
# 1 # 2 Sensor	0.0 FNU 124.0 FNU +++	

10 Einstellungen

10.1 Messeinstellungen pH

10.1.1 Einstellungen für pH-Messungen

Einstellungen Die Einstellungen finden Sie im Menü für Kalibrier- und Messeinstellungen der pH/Redox-Messung. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken. Nach Abschluss aller Einstellungen mit **<M>** zur Messwertansicht wechseln.

Menüpunkt	mögl. Einstellung	Erläuterung
Kalibrierung / Kalibrierprotokoll	-	Zeigt das Kalibrierprotokoll der letzten Kalibrierung an
Kalibrierung / Kalibrier-Speicher / Anzeigen	-	Zeigt die letzten Kalibrierprotokolle (max. 10)
Kalibrierung / Kalibrier-Speicher / Ausgabe RS232/USB	-	Gibt den Kalibrier-Speicher auf die Schnittstelle aus
Kalibrierung / Puffer	TEC ConCal NIST/DIN 	Zu verwendende Puffersätze für die pH-Kalibrierung. Weitere Puffer und Einzelheiten: siehe Abschnitt 10.1.2 PUFFERSÄTZE FÜR DIE KALIBRIERUNG, Seite 67 und Abschnitt 5.2 KALIBRIEREN PH, Seite 27.
Kalibrierung / Ein- punktkalibrierung	ja nein	Schnellkalibrierung mit 1 Puffer
Kalibrierung / Kalibrierintervall	1 7 999 d	<i>Kalibrierintervall</i> für den IDS-pH-Sensor (in Tagen). Das Messgerät erinnert Sie durch das blinkende Sensor- symbol im Messfenster an regelmäßiges Kalibrieren.
Kalibrierung / Einheit für Steigung	mV/pH %	Einheit für die Steigung. Die Anzeige in % ist auf die Nernst-Steilheit -59,2 mV/pH bezogen (100 x ermittelte Steilheit/Nernst- Steilheit).
QSC / Erstkalibrierung	-	Startet die Erstkalibrierung mit QSC-Puffern. Dieser Menüpunkt ist nur verfügbar, solange noch keine Erstkalibrierung mit dem angeschlossenen IDS-Sensor durchgeführt wurde
QSC / Protokoll der Erstkalibrierung	-	Zeigt das Kalibrierprotokoll der QSC-Erstkalibrierung an.
QSC / Kontrollkalibrie- rung	-	Startet die Kontrollkalibrierung mit QSC-Puffern. Dieser Menüpunkt ist nur verfügbar, wenn bereits eine Erst- kalibrierung mit dem angeschlossenen IDS-Sensor durch- geführt wurde

Einstellungen im Auslieferzustand sind fett hervorgehoben.

Menüpunkt	mögl. Einstellung	Erläuterung
Man. Temperatur	-25 +25 +130 °C	Eingabe der manuell ermittelten Temperatur Dieser Menüpunkt ist nur verfügbar, wenn ein IDS-Adapter angeschlossen ist.
Auflösung pH	0.001 0.01 0.1	Auflösung der pH-Anzeige
Auflösung mV	0.1 1	Auflösung der mV-Anzeige
Rücksetzen	-	Setzt alle Sensoreinstellungen auf den Auslieferzustand zurück (siehe Abschnitt 10.7.1 MESSEINSTELLUNGEN RÜCK- SETZEN, Seite 77)

10.1.2 Puffersätze für die Kalibrierung

Für eine automatische Kalibrierung können Sie die in der Tabelle angegebenen Puffersätze verwenden. Die pH-Werte gelten für die angegebenen Temperaturwerte. Die Temperaturabhängigkeit der pH-Werte wird beim Kalibrieren berücksichtigt.

Nr.	Puffersatz *	pH-Werte	bei
1	ConCal	beliebig	beliebig
2	<i>NIST/DIN</i> DIN-Puffer nach DIN 19266 und NIST Traceable Buffers	1,679 4,006 6,865 9,180 12,454	25 °C
3	<i>TEC</i> WTW Technische Puffer	2,000 4,010 7,000 10,011	25 °C
4	Merck 1*	4,000 7,000 9,000	20 °C
5	Merck 2 *	1,000 6,000 8,000 13,000	20 °C
6	Merck 3 *	4,660 6,880 9,220	20 °C

Nr.	Puffersatz *	pH-Werte	bei
7	Merck 4 *	2,000 4,000 7,000 10,000	20 °C
8	Merck 5 *	4,010 7,000 10,000	25 °C
9	DIN 19267	1,090 4,650 6,790 9,230	25 °C
10	Mettler Toledo USA *	1,679 4,003 7,002 10,013	25 °C
11	Mettler Toledo EU *	1,995 4,005 7,002 9,208	25 °C
12	Fisher *	2,007 4,002 7,004 10,002	25 °C
13	Fluka BS *	4,006 6,984 8,957	25 °C
14	Radiometer *	1,678 4,005 7,000 9,180	25 °C
15	Baker *	4,006 6,991 10,008	25 °C
16	Metrohm *	3,996 7,003 8,999	25 °C
17	Beckman *	4,005 7,005 10,013	25 °C
18	Hamilton Duracal *	4,005 7,002 10,013	25 °C
19	Precisa *	3,996 7,003 8,999	25 °C

Nr.	Puffersatz *	pH-Werte	bei
20	Reagecon TEC *	2,000 4,010 7,000 10,000	25 °C
21	Reagecon 20 *	2,000 4,000 7,000 10,000 13,000	20 °C
22	Reagecon 25 *	2,000 4,000 7,000 10,000 13,000	25 °C
23	Chemsolute *	2,000 4,000 7,000 10,000	20 °C
24	USABlueBook *	4,000 7,000 10,000	25 °C
25	YSI*	4,000 7,000 10,000	25 °C

* Marken- oder Warennamen sind gesetzlich geschützte Marken ihrer jeweiligen Inhaber

Die Auswahl der Puffer erfolgt im Menü pH / **<ENTER>** / *Kalibrierung* / *Puffer* (siehe Abschnitt 10.1.1 EINSTELLUNGEN FÜR PH-MES-SUNGEN, Seite 66).

10.1.3 Kalibrierintervall

Die Kalibrierbewertung wird im Display als Sensorsymbol dargestellt.

Nach Aktivieren der QSC-Funktion wird das Sensorsymbol durch die QSC-Skala ersetzt (siehe Abschnitt 5.2.8 QSC-FUNKTION (SENSORQUALITÄTSKONT-ROLLE), Seite 38).

Nach Ablauf des eingestellten Kalibrierintervalls blinkt das Sensorsymbol oder die QSC-Skala. Messungen sind weiterhin möglich.

Um die hohe Messgenauigkeit des Messsystems sicherzustellen, nach Ablauf des Kalibrierintervalls kalibrieren.

Kalibrierintervall
einstellenDas Kalibrierintervall ist werkseitig auf 7 Tage eingestellt.
Sie können das Intervall verändern (1 ... 999 Tage):

- 1. Mit **<ENTER>** das Menü für Messeinstellungen öffnen.
- 2. Im Menü *Kalibrierung | Kalibrierintervall* mit <▲ ><▼ > das Kalibrierintervall einstellen.
- 3. Mit **<ENTER>** die Einstellung bestätigen.
- 4. Mit **<M>** das Menü verlassen.

10.2 Messeinstellungen Redox

10.2.1 Einstellungen für Redoxmessungen

Die Einstellungen finden Sie im Menü für Messeinstellungen der Redox-Messung. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken. Nach Abschluss aller Einstellungen mit **<M>** zur Messwertansicht wechseln.

Einstellungen im Auslieferzustand sind fett hervorgehoben.

Menüpunkt	mögl. Einstellung	Erläuterung
Auflösung mV	0.1 1	Auflösung der mV-Anzeige
Rücksetzen	-	Setzt alle Sensoreinstellungen auf den Auslieferzustand zurück (siehe Abschnitt 10.7.1 MESSEINSTELLUN- GEN RÜCKSETZEN, Seite 77).

10.3 Messeinstellungen Oxi

10.3.1 Einstellungen für Sauerstoffsensoren (Menü für Mess- und Kalibriereinstellungen)

Einstellungen Die Einstellungen finden Sie im Menü für Mess- und Kalibriereinstellungen. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken. Nach Abschluss aller Einstellungen mit **<M>** zur Messwertansicht wechseln.

Einstellungen im Auslieferzustand sind fett hervorgehoben.

Menüpunkt	mögl. Einstellung	Erläuterung	
Kalibrierung / Kalibrierprotokoll	-	Zeigt das Kalibrierprotokoll der letz- ten Kalibrierung an	
Kalibrierung / Kalibrier-Speicher / Anzeigen	-	Zeigt die letzten Kalibrierprotokolle (max. 10)	

Menüpunkt	mögl. Einstellung	Erläuterung	
Kalibrierung / Kalibrier-Speicher / Ausgabe RS232/ USB	-	Gibt den Kalibrier-Speicher auf die Schnittstelle aus	
Kalibrierung / Kalibrierintervall	1 180 999 d	Kalibrierintervall für den Sauerstoff- sensor (in Tagen). Das Messgerät erinnert Sie durch das blinkende Sensorsymbol im Messfenster an regelmäßiges Kali- brieren.	
Kalibrierung / Vergleichsmessung	ein aus	Ermöglicht die Anpassung des Messwerts mit Hilfe einer Refe- renzmessung, z. B. Winkler-Titra- tion. Einzelheiten siehe Abschnitt 7.3 KALIBRIEREN, Seite 48.	
FDO Check / Start FDO Check	-	Startet die Überprüfung mit dem FDO [®] Check	
FDO Check / Check- Intervall	1 60 999 d	Intervall für den <i>FDO Check</i> (in Tagen). Das Messgerät erinnert Sie durch die Statusanzeige <i>FDO Check</i> im Messfenster an regelmäßiges Überprüfen des Sensors.	
Sal Korrektur	ein aus	Manuelle Salzgehaltskorrektur für Konzentrationsmessungen.	
Salinität	0.0 70.0	Salinität bzw. Salinitätsäquivalent für die Salzgehaltskorrektur. Dieser Menüpunkt ist nur verfüg- bar, wenn die manuelle Salzge- haltskorrektur eingeschaltet ist.	
Ansprechzeit t90	30 300 s	Ansprechzeit des Signalfilters (in Sekunden). Ein Signalfilter im Sensor vermin- dert die Schwankungsbreite des Messwerts. Der Signalfilter wird durch die Ansprechzeit t90 charak- terisiert. Dies ist die Zeit, nach der 90 % einer Signaländerung ange- zeigt werden.	
Rücksetzen -		Setzt alle Sensoreinstellungen auf den Auslieferzustand zurück (siehe Abschnitt 10.7.1 MESSEINSTELLUN- GEN RÜCKSETZEN, Seite 77)	

10.4 Messeinstellungen Cond

10.4.1 Einstellungen für IDS-Leitfähigkeitssensoren

Einstellungen Die Einstellungen finden Sie im Menü für die Messgröße Leitfähigkeit. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken. Nach Abschluss aller Einstellungen mit **<M>** zur Messwertansicht wechseln. Für jeden Sensor werden individuell die möglichen Einstellungen angezeigt. Das Einstellmenü ist im Folgenden für zwei IDS-Sensoren (TetraCon 925,

LR 325/01) dargestellt.

Einstellmenü TetraCon 925	Menüpunkt	mögl. Einstellung	Erläuterung
	Kalibrierung / Kalibrierprotokoll	-	Zeigt das Kalibrierprotokoll der letzten Kalibrierung an
	Kalibrierung / Kalibrier-Speicher / Anzeigen	-	Zeigt die letzten Kalibrierproto- kolle (max. 10)
	Kalibrierung / Kalibrier-Speicher / Ausgabe RS232/USB	-	Gibt den Kalibrier-Speicher auf die Schnittstelle aus
	Kalibrierung / Kalibrierintervall	1 150 999 d	Kalibrierintervall für den IDS- Leitfähigkeitssensor (in Tagen). Das Messgerät erinnert Sie durch das blinkende Sensor- symbol im Messfenster an regel- mäßiges Kalibrieren.
	Тур		Verwendete Messzelle
		cal	Messzellen, deren Zellenkons- tante durch Kalibrierung im KCL- Kontrollstandard bestimmt wird. Kalibrierbereich: 0,450 bis 0,500 cm ⁻¹ Die aktuell gültige Zellenkons- tante wird in der Statuszeile angezeigt.
		man	Frei (manuell) einstellbare Zellenkonstante im Bereich 0,450 bis 0,500 cm ^{-1.}
	Man. Zellenkonst.	0,450 0,475 0,500 cm ⁻¹	Anzeige und Einstellmöglichkeit für die manuell einstellbare Zellenkonstante. Dieser Menüpunkt ist nur verfüg- bar, wenn <i>Typ man</i> eingestellt ist.

Einstellungen im Auslieferzustand sind fett hervorgehoben.
Menüpunkt	mögl. Einstellung	Erläuterung
TempKomp. (TC) / Methode	nLF Lin aus	Verfahren zur Temperaturkom- pensation (siehe Abschnitt 8.2 TEMPERATURKOMPENSATION, Seite 55). Diese Einstellung steht nur für die Messgrößen Leitfähigkeit (<i>x</i>) und spezifischer Widerstand (ρ) zur Verfügung.
TempKomp. (TC) / Linear Koeff.	0.000 2.000 3.000 %/K	Koeffizient für die lineare Tem- peraturkompensation. Dieser Menüpunkt ist nur verfüg- bar, wenn die lineare Tempera- turkompensation eingestellt ist.
TempKomp. (TC) / Referenztemp.	20 °C 25 °C	Referenztemperatur Diese Einstellung steht nur für die Messgrößen Leitfähigkeit (x) und spezifischer Widerstand (ρ) zur Verfügung.
TDS Faktor	0,40 1,00	Faktor für den TDS-Messwert
Rücksetzen	-	Setzt alle Sensoreinstellungen auf den Auslieferzustand zurück (siehe Abschnitt 10.7.1 MESSEINSTELLUNGEN RÜCKSET- ZEN, Seite 77)

Einstellmenü	
LR 925/01	

Menüpunkt	mögl. Einstellung	Erläuterung
Zellenkonstante	0,090 0,100 0,110 cm ⁻¹	Anzeige und Einstellmöglichkeit für die Zellenkonstante
TempKomp. (TC) / Methode	nLF Lin aus	Verfahren zur Temperaturkompen- sation (siehe Abschnitt 8.2 TEMPE- RATURKOMPENSATION, Seite 55). Diese Einstellung steht nur für die Messgrößen Leitfähigkeit (x) und spezifischer Widerstand (ρ) zur Verfügung.
TempKomp. (TC)/ Linear Koeff.	0.000 2.000 3.000 %/K	Koeffizient für die lineare Tempera- turkompensation. Dieser Menüpunkt ist nur verfüg- bar, wenn die lineare Temperatur- kompensation eingestellt ist.

Einstellmenü VisoTurb[®] 900-P

Menüpunkt	mögl. Einstellung	Erläuterung
TempKomp. (TC) / Referenztemp.	20 °C 25 °C	Referenztemperatur Diese Einstellung steht nur für die Messgrößen Leitfähigkeit (<i>x</i>) und spezifischer Widerstand (ρ) zur Verfügung.
TDS Faktor	0,40 1,00	Faktor für den TDS-Messwert
Rücksetzen	-	Setzt alle Sensoreinstellungen auf den Auslieferzustand zurück (siehe Abschnitt 10.7.1 MESSEINSTELLUN- GEN RÜCKSETZEN, Seite 77)

10.5 Messeinstellungen Turb

10.5.1 Einstellungen für Trübungsssensoren

Die Einstellungen finden Sie im Menü für die Messgröße Trübung. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken. Nach Abschluss aller Einstellungen mit **<M>** zur Messwertansicht wechseln.

Für jeden Sensor werden individuell die möglichen Einstellungen angezeigt. Einstellungen im Auslieferzustand sind **fett** hervorgehoben.

Menüpunkt	mögl. Einstellung	Erläuterung
Kalibrierung / Kalibrierprotokoll	-	Zeigt das Kalibrierprotokoll der letz- ten Kalibrierung an
Kalibrierung / Kalibrier-Speicher / Anzeigen	-	Zeigt die letzten Kalibrierprotokolle (max. 10)
Kalibrierung / Kalibrier-Speicher / Kopiere auf USB- Stick	-	Gibt den Kalibrier-Speicher auf einen angeschlossenen USB-Spei- cher/USB-Drucker aus
Kalibrierung / Kalibrier-Speicher / Ausgabe RS232/ USB	-	Gibt den Kalibrier-Speicher auf die Schnittstelle aus

Menüpunkt	mögl. Einstellung	Erläuterung
Kalibrierung / Kalibrierintervall	1 30 999 d	<i>Kalibrierintervall</i> für den Trübungs- sensor (in Tagen). Das Messgerät erinnert Sie durch das blinkende Sensorsymbol im Messfenster an regelmäßiges Kalib- rieren.
Auflösung	0.1 1	Auflösung der FNU/NTU-Anzeige
Rücksetzen	-	Setzt alle Sensoreinstellungen auf den Auslieferzustand zurück (siehe Abschnitt 10.7.1 MESSEINSTELLUN- GEN RÜCKSETZEN, Seite 77)

10.6 Sensorunabhängige Einstellungen

10.6.1 System

Zum Öffnen des Menüs *Speicher & Konfig.* in der Messwertansicht die Taste **<ENTER_ >** drücken. Nach Abschluss aller Einstellungen mit **<M>** zur Messwertansicht wechseln.

Einstellungen im Auslieferzustand sind fett hervorgehoben.

Menüpunkt	mögl. Einstellung	Erläuterung
System / Allgemein / Sprache	<i>Deutsch</i> English (weitere)	Menüsprache auswählen
System / Allgemein / Akustisches Signal	ein aus	Signalton bei Tastendruck ein- / ausschalten
System / Allgemein / Beleuchtung	Auto ein aus	Displaybeleuchtung ein-/ausschalten
System / Allgemein / Kon- trast	0 50 100	Displaykontrast verändern
System / Allgemein / Abschaltzeit	10 min 1h 24 h	Abschaltzeit einstellen
System / Allgemein / Tem- peratur Einheit	° C °F	Temperatureinheit Grad Celsius oder Grad Fahrenheit. Alle Temperaturangaben werden mit der gewählten Einheit angezeigt.
System / Allgemein / Sta- bilitätskontrolle	ein aus	Automatische Stabilitätskontrolle bei Messung ein-/ ausschalten (siehe Abschnitt 10.6.3 AUTOMATISCHE STABILITÄTSKONTROLLE, Seite 76)

Menüpunkt	mögl. Einstellung	Erläuterung
System / Schnittstelle / Baudrate	1200, 2400, 4800 , 9600, 19200	Baudrate der USB Device-Schnittstelle
System / Schnittstelle / Ausgabe Format	ASCII CSV	Ausgabeformat für die Datenübertragung. Details siehe Abschnitt 12 DATEN ÜBERTRAGEN (USB-SCHNITTSTELLE), Seite 87
Nur bei: <i>Ausgabe Format</i> CSV:		
 System / Schnittstelle / Dezimaltrennzeichen 	Punkt (xx.x) Komma (xx,x)	Dezimaltrennzeichen
 System / Schnittstelle / Kopfzeile ausgeben 		Ausgabe einer Kopfzeile für Ausgabe Format. CSV
System / Uhrfunktion	Datumsformat Datum Zeit	Uhrzeit- und Datumseinstellungen. Details siehe Abschnitt 4.5.5 BEISPIEL 2 ZUR NAVI- GATION: DATUM UND UHRZEIT EINSTELLEN, Seite 23
System / Service Informa- tion		Hardware- und Softwareversion des Geräts werden angezeigt.
System / Rücksetzen	-	Setzt die Systemeinstellungen auf den Auslieferzu- stand zurück. Details siehe Abschnitt 10.7.2 SYSTEMEINSTELLUN- GEN RÜCKSETZEN, Seite 80

10.6.2 Speicher

Dieses Menü enthält alle Funktionen zum Anzeigen, Bearbeiten und Löschen von gespeicherten Messwerten.

Ausführliche Informationen zu den Speicherfunktionen des Multi 3510 IDS finden Sie in Abschnitt 11 SPEICHERN, Seite 81.

10.6.3 Automatische Stabilitätskontrolle

Die Funktion automatische *Stabilitätskontrolle* prüft kontinuierlich die Stabilität des Messsignals. Die Stabilität hat einen wesentlichen Einfluss auf die Reproduzierbarkeit des Messwerts.

Sie können die Funktion automatische *Stabilitätskontrolle* aktivieren oder ausschalten (siehe Abschnitt 10.6 SENSORUNABHÄNGIGE EINSTELLUNGEN, Seite 75).

Die Messgröße im Display blinkt,

- sobald der Messwert den Stabilitätsbereich verlässt
- wenn die automatische Stabilitätskontrolle ausgeschaltet ist.

10.6.4 Abschaltautomatik

Zur Schonung der Batterien besitzt das Gerät eine automatische Abschaltfunktion (siehe Abschnitt 10.6.1 SYSTEM, Seite 75). Die Abschaltautomatik schaltet das Messgerät ab, wenn eine einstellbare Zeit lang keine Taste betätigt wurde.

Die Abschaltautomatik ist nicht aktiv

- bei angeschlossenem Steckernetzgerät
- bei angeschlossenem USB-B-Kabel
- bei aktivierter Funktion *Automatischer Speicher*, oder bei automatischer Datenübertragung

10.6.5 Displaybeleuchtung

Das Messgerät schaltet die Displaybeleuchtung automatisch aus, wenn innerhalb von 20 Sekunden kein Tastendruck erfolgt.

Die Beleuchtung schaltet beim nächsten Tastendruck wieder ein.

Alternativ können Sie die Displaybeleuchtung auch generell einschalten (siehe Abschnitt 10.6.1 SYSTEM, Seite 75).

10.7 Rücksetzen (Reset)

Sie können alle Sensoreinstellungen und alle sensorunabhängigen Einstellungen getrennt voneinander rücksetzen (initialisieren).

10.7.1 Messeinstellungen rücksetzen

Die Kalibrierdaten werden beim Rücksetzen der Messparameter auf den Auslieferzustand zurückgesetzt. Nach dem Rücksetzen kalibrieren!

pH Folgende Einstellungen für die pH-Messung werden mit der Funktion *Rücksetzen* auf den Auslieferzustand rückgesetzt:

Einstellung	Auslieferzustand
Puffer	TEC
Kalibrierintervall	7 d
Einheit für Steigung	mV/pH
Messgröße	рН
Einheit für Steigung	0.001
Auflösung mV	0.1

Einstellung	Auslieferzustand
Asymmetrie	0 mV
Steigung	-59,2 mV
Man. Temperatur	25 °C
Einpunktkalibrierung	aus

Das Rücksetzen der Sensoreinstellungen erfolgt unter dem Menüpunkt *Rücksetzen* im Menü für Kalibrier- und Messeinstellungen. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken.

Redox Folgende Einstellungen für die Redox-Messung werden mit der Funktion *Rücksetzen* auf den Auslieferzustand rückgesetzt:

Einstellung	Auslieferzustand
Auflösung mV	0.1
Man. Temperatur	25 °C

Das Rücksetzen der Sensoreinstellungen erfolgt unter dem Menüpunkt *Rücksetzen* im Menü für Kalibrier- und Messeinstellungen. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken.

Sauerstoff Folgende Einstellungen für die Sauerstoffmessung werden mit der Funktion *Rücksetzen* auf den Auslieferzustand rückgesetzt:

Einstellung	Auslieferzustand
Kalibrierintervall	180 d
Check-Intervall	60 d
Messgröße	Sauerstoffkonzentration (mg/l)
relative Steilheit (S _{Rel})	1,00
Salinität (Wert)	0,0
Salinität (Funktion)	aus

Das Rücksetzen der Sensoreinstellungen erfolgt unter dem Menüpunkt *Rücksetzen* im Menü für Kalibrier- und Messeinstellungen. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken.

Leitfähigkeit Folgende Einstellungen für die Leitfähigkeitsmessung werden mit der Funktion *Rücksetzen* auf den Auslieferzustand rückgesetzt:

Einstellung	Auslieferzustand
Kalibrierintervall	150 d
Messgröße	χ
Zellenkonstante (C)	je nach angeschlossener Messzelle: 0,475 cm ⁻¹ (kalibriert) 0,475 cm ⁻¹ (eingestellt) 0,100 cm ⁻¹
Temperaturkompensation	nLF
Referenztemperatur	25 °C
Temperaturkoeffizient (TC) der linearen Temperatur- kompensation	2,000 %/K
TDS-Faktor	1,00

Das Rücksetzen der Sensoreinstellungen erfolgt unter dem Menüpunkt *Rücksetzen* im Menü für Kalibrier- und Messeinstellungen. Zum Öffnen in der Messwertansicht die gewünschte Messgröße anzeigen und die Taste **<ENTER>** drücken.

10.7.2 Systemeinstellungen rücksetzen

Die folgenden Systemeinstellungen lassen sich auf den Auslieferzustand rücksetzen:

Einstellung	Auslieferzustand
Sprache	English
Akustisches Signal	ein
Baudrate	4800 baud
Ausgabe Format	ASCII
Dezimaltrennzeichen	
Kontrast	50
Beleuchtung	Auto
Abschaltzeit	1 h
Temperatur Einheit	°C
Stabilitätskontrolle	ein

Das Rücksetzen der Systemeinstellungen erfolgt im Menü *Speicher & Konfig.* / *System | Rücksetzen.* Zum Öffnen des Menüs *Speicher & Konfig.* in der Messwertansicht die Taste **<ENTER_ >** drücken.

11 Speichern

Sie können Messwerte (Datensätze) in den Datenspeicher übertragen:

- Manuell speichern (siehe Abschnitt 11.1 MANUELL SPEICHERN, Seite 81)
- Automatisch intervallweise speichern, siehe Abschnitt 11.2 AUTOMATISCH INTERVALLWEISE SPEICHERN, Seite 82)

Bei jedem Speichervorgang wird der aktuelle Datensatz auf die USB-Schnittstelle übertragen.

11.1 Manuell speichern

So können Sie einen Messdatensatz in den Datenspeicher übertragen. Der Datensatz wird gleichzeitig auf die Schnittstelle ausgegeben:

Die Taste **<STO>** <u>kurz</u> drücken.
 Das Menü für das manuelle Speichern erscheint.

Manueller Speicher 4 von 494			
03.04.2013 07:43:33 pH 7.000 24.8 °C AR +++			
ID-Nummer: weiter	1		
Zurück 03.04.2013 08:00			

- Gegebenenfalls mit <▲ ><▼ > und <ENTER> die Ident-Nummer (ID) ändern und bestätigen (1 ... 10000). Der Datensatz wird gespeichert. Das Gerät wechselt in die Messwertansicht.
- Wenn der Speicher voll ist Wenn alle Speicherplätze belegt sind, ist ein weiteres Speichern nicht möglich. Sie können dann z. B. die gespeicherten Daten auf einen PC übertragen (siehe Abschnitt 11.3.1 MESSDATENSPEICHER BEARBEITEN, Seite 84) und anschließend den Speicher löschen (siehe Abschnitt 11.3.2 MESSDATENSPEICHER LÖSCHEN, Seite 85).

11.2 Automatisch intervallweise speichern

Das Speicherintervall (*Intervall*) bestimmt den zeitlichen Abstand zwischen automatischen Speichervorgängen. Bei jedem Speichervorgang wird der aktuelle Datensatz auf die USB-Schnittstelle übertragen.

- Automatische Speicherfunktion konfigurieren
- 1. Die Taste **<STO_ >** drücken.

Das Menü für das automatische Speichern erscheint.

Einstellungen Mit den folgenden Einstellungen konfigurieren Sie die automatische Speicherfunktion:

Menüpunkt	mögl. Einstellung	Erläuterung
ID-Nummer	1 10000	Ident-Nummer für die Datensatzreihe.
Intervall	1 s, 5 s, 10 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min	Speicherintervall. Die Untergrenze für das Speicherinter- vall kann durch die Größe des freien Speicherplatzes limitiert sein. Die Obergrenze ist limitiert durch die Speicherdauer.
Dauer	1 min x min	Speicherdauer. Gibt an, nach welcher Zeit das auto- matische Speichern beendet werden soll. Die Untergrenze für Speicherdauer ist limitiert durch das Speicherintervall. Die Obergrenze ist limitiert durch die Größe des freien Speicherplatzes.

Automatisches Speichern starten

Zum Starten des automatischen Speicherns mit <▲ ><▼ > *weiter* auswählen und mit <**ENTER**> bestätigen. Das Messgerät wechselt zur Messwertansicht.

- 1 Verbleibende Speicherdauer
- 2 Grafische Darstellung der Speicherdauer

Die aktive automatische Speicherung ist am Fortschrittsbalken in der Statuszeile zu erkennen. Der Fortschrittsbalken zeigt die verbleibende Speicherdauer.

Bei aktivem automatischem Speichern *sind nur noch folgende Tasten aktiv:* **<M>**, **<STO_ >** und **<On/Off>**. Andere Tasten und die Funktion automatische Abschaltung sind deaktiviert.

Automatisches Speichern vorzeitig beenden So schalten Sie das automatische Speichern vor Ablauf der regulären Speicherdauer aus:

1. Taste **<STO_ >** drücken. Das folgende Fenster erscheint.

Warnung	_	
Autom. Speichern beenden?		
ja		
nein		
00.04.0040		
03.04.2013 08:00		

 Mit <▲ ><▼ > ja auswählen und mit <ENTER> bestätigen. Das Messgerät wechselt zur Messwertansicht. Das automatische Speichern ist beendet.

11.3 Messdatenspeicher

11.3.1 Messdatenspeicher bearbeiten

Sie können den Inhalt des manuellen oder automatischen Messdatenspeichers am Display anzeigen.

Jeder Messdatenspeicher besitzt eine eigene Löschfunktion für den gesamten Inhalt.

Datenspeicher Die Bearbeitung des Speichers erfolgt im Menü Speicher & Konfig./ Speicher. bearbeiten Zum Öffnen des Menüs Speicher & Konfig. in der Messwertansicht die Taste <ENTER_ >drücken.

> Über die Tasten **<RCL>** bzw. **<RCL__>** öffnen Sie direkt den manuellen bzw. den automatischen Speicher.

Die Einstellungen sind hier für den manuellen Speicher beispielhaft dargestellt. Für den automatischen Speicher sind die gleichen Einstellungen und Funktionen verfügbar.

Einstellungen	Menüpunkt	Einstellung/ Funktion	Erläuterung
	Speicher / Manueller Speicher / Anzeigen	-	Zeigt alle Messdatensätze seiten- weise an.
			 Weitere Optionen: Mit <▲ ><▼ > blättern Sie durch die Datensätze
			 Mit <f2>/[USB-Ausgabe] geben Sie den angezeigten Datensatz auf die Schnittstelle aus.</f2>
			 Mit <f1>/[Zurück] verlassen Sie die Anzeige.</f1>
	Speicher / Manueller Speicher / Ausgabe RS232/ USB	-	Gibt alle gespeicherten Messda- ten auf die Schnittstelle aus
	Speicher / Manueller Speicher / Löschen	-	Löscht den gesamten manuellen Messdatenspeicher. Hinweis: Alle Kalibrierdaten bleiben bei die- ser Aktion erhalten.

Darstellung eines Datensatzes auf dem Display	Manueller Speicher 3 von 64 03.04.2013 07:43:33 ID-Nummer: 1 SenTix 940 B092500013 pH 7.000 24.8 °C AR Sensor: +++ Zurück 03.04.2013 08:00 USB-Ausgabe
Darstellung eines Datensatzes (USB-Ausgabe)	03.04.2013 07:43:33 Multi 3510 IDS Ser. Nr. 09250023 ID-Nummer 2 SenTix 940 Ser. Nr. B092500013 pH 6.012 24.8 °C, AR, S: +++ 03.04.2013 07:43:53 Multi 3510 IDS Ser. Nr. 09250013 ID-Nummer 2 SenTix 940 Ser. Nr. B092500013 pH 6.012 24.8 °C, AR, S: +++

Anzeige verlassen Zum Verlassen der Anzeige gespeicherter Messdatensätze haben Sie folgende Möglichkeiten:

- Mit <M> wechseln Sie direkt zur Messwertansicht.
- Mit <F1>/[Zurück] verlassen Sie die Anzeige und gelangen in die nächsthöhere Menüebene.

11.3.2 Messdatenspeicher löschen

Löschen des Messdatenspeichers (siehe Abschnitt 11.3.1 MESSDATENSPEI-CHER BEARBEITEN, Seite 84).

11.3.3 Messdatensatz

Ein kompletter Datensatz besteht aus:

- Datum/Uhrzeit
- Gerätename, Seriennummer
- Sensorname, Seriennummer

- ID-Nummer
- Messwert des angeschlossenen Sensors
- Temperaturmesswert des angeschlossenen Sensors
- AutoRead-Info: *AR* erscheint mit dem Messwert, wenn das AutoRead-Kriterium beim Speichern erfüllt war (stabiler Messwert). Ansonsten fehlt die Anzeige *AR*.
- Kalibrierbewertung:
 - 4-Stufig (+++, ++, +, -, oder keine Bewertung) oder
 - QSC (Prozentangabe)

11.3.4 Speicherplätze

Das Messgerät Multi 3510 IDS verfügt über zwei Messdatenspeicher. Manuell und automatisch gespeicherte Messwerte werden getrennt in eigenen Messdatenspeichern abgelegt.

Speicher	maximale Zahl der Datensätze
Manueller Speicher	494
Automatischer Speicher	4500

12 Daten übertragen (USB-Schnittstelle)

12.1 Aktuelle Messdaten ausgeben

1. Mit **<F2>**/[USB-Ausgabe] die aktuellen Messdaten an die Schnittstelle USB-B ausgeben.

12.2 Daten übertragen (an einen PC)

Das Messgerät verfügt über eine USB-B Schnittstelle (*USB Device*) z. B. zum Anschluss eines PC.

Über die Schnittstelle USB-B (*USB Device*) können Sie Daten an einen PC übertragen und die Gerätesoftware aktualisieren.

12.3 PC anschließen / Schnittstelle USB-B (USB Device)

Systemvoraussetzungen des PC für die Installation des USB-Treibers:

Verbinden Sie das Multi 3510 IDS über die USB-B-Schnittstelle mit dem PC.

Installation des USB-Treibers auf den PC

- PC mit mindestens einem freien USB-Anschluss und CD-ROM-Laufwerk
- Windows 2000, Windows XP, Windows Vista oder Windows 7.
- 1. Die beiliegende Installations-CD in das CD-Laufwerk ihres PC einlegen.
- 2. Den Treiber von der CD installieren. Gegebenenfalls den Installationsanweisungen von Windows folgen.
- Das Multi 3510 IDS über die USB-B-Schnittstelle mit dem PC verbinden.
 Das Messgerät wird im Windows-Gerätemanager unter den Anschlüssen als virtuelle COM-Schnittstelle aufgelistet.
- 4. Die gleichen Übertragungsdaten am angeschlossenen Gerät (PC) einstellen:
 - Baudrate: wählbar zwischen 1200 ... 19200
 - Handshake: RTS/CTS
 - Nur am PC einzustellen:
 - Parität: keine
 - Datenbits: 8
 - Stopbits: 2

12.4 Optionen für die Datenübertragung an einen PC

Über die USB-B-Schnittstelle können Sie Daten an einen PC übertragen. Die folgende Tabelle zeigt, welche Daten wie auf die Schnittstelle übertragen werden:

Daten	Steuerung	Bedienung / Beschreibung	
Aktuelle	manuell	• Mit <f2></f2> /[USB-Ausgabe] .	
Messwerte aller ange- schlossenen Sensoren		 Gleichzeitig mit jedem manuellen Speichervorgang (siehe Abschnitt 11.1 MANUELL SPEICHERN, Seite 81). 	
	automatisch intervall- weise	 Mit <f2_>/[USB-Ausgabe]. Anschließend können Sie das Übertra- gungsintervall einstellen.</f2_> 	
		 Gleichzeitig mit jedem automatischen Speichervorgang (siehe Abschnitt 11.2 AUTOMATISCH INTERVALLWEISE SPEICHERN, Seite 82). 	
Gespei- cherte Mess- werte	manuell	 Angezeigter Datensatz mit <f2>/ [USB-Ausgabe] nach Aufruf aus dem Speicher.</f2> 	
		 Alle Datensätze über die Funktion Ausgabe RS232/USB. (siehe Abschnitt 11.3.1 MESSDATEN- SPEICHER BEARBEITEN, Seite 84). 	
Kalibrierpro- manuell tokolle		 Kalibrierprotokoll mit <f2>/[USB-Aus- gabe] (siehe Abschnitt 5.2.6 KALI- BRIERDATEN, Seite 34; Abschnitt 7.3.6 KALIBRIERDATEN, Seite 51; Abschnitt 8.3.4 KALIBRIERDATEN, Seite 57).</f2> 	
	automatisch	• Am Ende einer Kalibrierung.	

Es gilt folgende Regel: Mit Ausnahme der Menüs wird generell bei einem kurzen Druck auf **<F2>**/*[USB-Ausgabe]* der Displayinhalt auf die Schnittstelle ausgegeben (angezeigte Messwerte, Messdatensätze, Kalibrierprotokolle).

12.5 MultiLab Importer

Mit Hilfe der Software MultiLab Importer können Sie Messdaten mit einem PC aufzeichnen und auswerten.

Nähere Hinweise entnehmen Sie bitte der Bedienungsanleitung zum MultiLab Importer.

13 Wartung, Reinigung, Entsorgung

13.1 Wartung

13.1.1 Allgemeine Wartungsarbeiten

Die Wartungsarbeiten beschränken sich auf das Austauschen der Batterien.

Zur Wartung der IDS-Sensoren die entsprechenden Bedienungsanleitungen beachten.

13.1.2 Batterien austauschen

Sie können das Messgerät wahlweise mit Batterien oder Akkus (Ni-MH) betreiben. Zum Laden der Akkus benötigen Sie ein externes Ladegerät.

- 1. Die Schrauben (1) an der Geräteunterseite lösen.
- 2. Das Batteriefach (2) an der Geräteunterseite öffnen.
- 3. Die Batterien aus dem Batteriefach nehmen.

VORSICHT

Achten Sie auf die richtige Polung der Batterien. Die ±-Angaben im Batteriefach müssen mit den ±-Angaben auf den Batterien übereinstimmen.

Sie können das Messgerät wahlweise mit Batterien oder Akkus (Ni-MH) betreiben. Zum Laden der Akkus benötigen Sie ein externes Ladegerät.

- 4. Vier Batterien (Typ Mignon AA) ins Batteriefach legen.
- 5. Das Batteriefach (2) schließen.
- Datum und Uhrzeit einstellen (siehe Abschnitt 4.5.5 BEISPIEL 2 ZUR NAVIGATION: DATUM UND UHRZEIT EINSTELLEN, Seite 23).

Entsorgen Sie verbrauchte Batterien gemäß den in Ihrem Land geltenden Bestimmungen.

Innerhalb der Europäischen Union sind Endnutzer verpflichtet, verbrauchte Batterien (auch schadstoffreie) über eine Sammelstelle der Wiederverwertung zuzuführen.

Batterien sind mit dem Symbol der durchgestrichenen Mülltonne gekennzeichnet und dürfen demnach nicht im Hausmüll entsorgt werden.

13.2 Reinigung

Das Messgerät gelegentlich mit einem feuchten, fusselfreien Tuch abwischen. Bei Bedarf das Gehäuse mit Isopropanol desinfizieren.

VORSICHT

Das Gehäuse besteht aus Kunststoff (ABS). Deshalb den Kontakt mit Aceton oder ähnlichen, lösungsmittelhaltigen Reinigungsmitteln vermeiden. Spritzer sofort entfernen.

13.3 Verpackung

Das Messgerät wird in einer schützenden Transportverpackung verschickt. Wir empfehlen: Bewahren Sie das Verpackungsmaterial auf. Die Originalverpackung schützt das Messgerät vor Transportschäden.

13.4 Entsorgung

Führen Sie das Gerät am Ende der Nutzungsdauer dem in Ihrem Land vorgeschriebenen Entsorgungs- bzw. Rücknahmesystem zu. Bei Fragen wenden Sie sich bitte an Ihren Händler.

14 Was tun, wenn...

14.1 pH

Weitere Informationen sowie Hinweise zu Reinigung und Austausch von Sensoren finden Sie in der Dokumentation zu Ihrem Sensor.

Fehlermeldung OFL, UFL Der Messwert befindet sich außerhalb des Messbereichs.

Ursache	Behebung	
IDS-pH-Sensor:		
 Messwert außerhalb des Messbereichs des Messgeräts 	 Geeigneten IDS-pH-Sensor verwenden 	
 Luftblase vor dem Diaphragma 	 Luftblase entfernen (z. B. Lösung schwenken oder rühren) 	
 Luft im Diaphragma 	 Luft absaugen bzw. Diaphragma benetzen 	
 Kabel gebrochen 	 Sensor austauschen 	
 Elektrolytgel eingetrocknet 	 Sensor austauschen 	

Fehlermeldung	Ursache	Behebung
Enor	IDS-pH-Sensor:	
	 Die ermittelten Werte f ür Null- punkt und Steilheit des IDS-pH- Sensors sind au ßerhalb der erlaubten Grenzen. 	 neu kalibrieren
	 Diaphragma verschmutzt 	 Diaphragma reinigen
	 Sensor gebrochen 	 Sensor austauschen
	Pufferlösungen:	
	 Verwendete Pufferlösungen passen nicht zum eingestellten Puffersatz 	 anderen Puffersatz einstellen oder andere Pufferlösungen verwenden
	 Pufferlösungen zu alt 	 Nur 1x verwenden. Haltbarkeit beachten
	 Pufferlösungen verbraucht 	 Lösungen wechseln

Kein stabiler Messwert	Ursache	Behebung
	IDS-pH-Sensor:	
	 Diaphragma verschmutzt 	 Diaphragma reinigen
	 Membran verschmutzt 	 Membran reinigen
	Messlösung:	
	 pH-Wert nicht stabil 	 ggf. unter Luftabschluss messen
	 Temperatur nicht stabil 	 ggf. temperieren

IDS-pH-Sensor + Messlösung:	
 Leitfähigkeit zu gering 	 geeigneten IDS-pH-Sensor verwenden
 Temperatur zu hoch 	 geeigneten IDS-pH-Sensor verwenden
 Organische Flüssigkeiten 	 geeigneten IDS-pH-Sensor verwenden

Offensichtlich Ursache	Ursache	Behebung
	IDS-pH-Sensor:	
	 Sensor ungeeignet 	 geeigneten IDS-Sensor verwenden
	 Temperaturunterschied zwi- schen Puffer- und Messlösung zu groß 	 Puffer- oder Messlösungen tempe- rieren
	 Messverfahren nicht geeignet 	 Spezielle Verfahren beachten

14.2 Sauerstoff

Weitere Informationen sowie Hinweise zu Reinigung und Austausch von Sensoren finden Sie in der Dokumentation zu Ihrem Sensor.

Fehlermeldung OFL, UFL Der Messwert befindet sich außerhalb des Messbereichs.

	Ursache	Behebung
	 Messwert außerhalb des Messbereichs 	 Geeigneten IDS-Sauerstoffsensor verwenden
Fehlermeldung	Ursache	Behebung
Enor	 Sensor verunreinigt 	– Sensor reinigen
	 Temperaturmesswert außerhalb der Betriebsbedingungen (Anzeige von OFL/UFL anstelle eines Temperaturmesswerts) 	 Temperaturbereich f ür das Messgut einhalten
	 Sensor defekt 	– Kalibrieren
		 Sensorkappe tauschen
		 Sensor austauschen

14.3 Leitfähigkeit

Weitere Informationen sowie Hinweise zu Reinigung und Austausch von Sensoren finden Sie in der Dokumentation zu Ihrem Sensor.

Fehlermeldung OFL, UFL

Der Messwert befindet sich außerhalb des Messbereichs.

Ursache	Behebung
 Messwert außerhalb des	 Geeigneten IDS-Leitfähigkeitssen-
Messbereichs	sor verwenden

Fehlermeldung Error

lung	Ursache	Behebung
	 Sensor verunreinigt 	 Sensor reinigen, ggf. austauschen
	 Ungeeignete Kalibrierlösung 	 Kalibrierlösungen pr üfen

1

14.4 Trübung

Unplausible	Ursache	Behebung
Trubulgsmesswerte	 Vor dem Messfenster befinden sich Gasblasen (z. B. Luftbla- sen) 	 Gasblasen entfernen, z. B. Sensor schräg eintauchen

	Ursache	Behebung
	 Kalibrierung falsch, z. B.: ungeeignete Kalibrierstan- dardlösungen (z. B. zu alt) 	 Kalibrierung pr üfen
	 ungeeignete Kalibrierumge- bung (z. B. Gasblasen, Reflexionen, Licht) 	
	 Mindesteintauchtiefe nicht ein- gehalten 	 Mindesteintauchtiefe des Sensors beachten (2 cm)
Fehlermeldung	Ursache	Behebung
UFL	 Messwert außerhalb des Messbereichs 	 Geeignetes Messmedium wählen
Messwerte zu	Ursache	Behebung
niedrig	 Messfenster verschmutzt 	 Messfenster reinigen
Messwerte zu hoch	Ursache	Behebung
	 Reflexionen an den Wänden oder dem Boden des Messgefä- ßes 	 Abstand des Sensors zu Wänden und Boden des Messgefäßes einhalten (siehe Abschnitt 9.1.1 TRÜBUNG MESSEN, Seite 59)
	 Lichteinfall 	 Lichtundurchlässiges Mess- gefäß verwenden

Weitere Informationen sowie Hinweise zu Reinigung und Austausch von Sensoren finden Sie in der Dokumentation zu Ihrem Sensor.

14.5 Allgemein

Sensorsymbol blinkt Ursache		Behebung	
	 Kalibrierintervall abgelaufen 	 Messsystem neu kalibrieren 	

Anzeige	Ursache	Behebung
	 Batterien weitgehend entladen 	 Batterien austauschen (siehe Abschnitt 13.1 WARTUNG, Seite 90)
Gerät reagiert nicht	Ursache	Behebung
auf fastendruck	 Betriebszustand undefiniert oder EMV-Beaufschlagung unzuläs- sig 	 Prozessor-Reset: Gleichzeitig die Tasten <enter></enter> und <on off=""> drücken</on>
Sie möchten wissen,	Ursache	Behebung
welche Software- Version im Gerät oder im IDS-Sensor ist	 z. B. Frage der Service-Abtei- lung 	 Messgerät einschalten.
		 Das Menü <enter_> / Speicher & Konfig. / System / Service Information öffnen. Die Gerätedaten werden angezeigt.</enter_>
		oder – Sensor anschließen. Softkey < F1 >/[<i>Info</i>] / < F1 >/[<i>Mehr</i>] drücken. Die Sensordaten werden angezeigt (siehe Abschnitt 4.1.5 SEN- SOR-INFO, Seite 16)

15 Technische Daten

15.1 Messbereiche, Auflösungen, Genauigkeiten

Messbereiche, Genauigkeiten	Größe	Messbereich	Genauigkeit
	Luftdruck (absolut)*	300 1100 mbar	± 43 mbar

* nur bei angeschlossenem Sauerstoffsensor verfügbar

Weitere Daten finden Sie in der Dokumentation zu Ihrem Sensor.

15.2 Allgemeine Daten

Abmessungen	ca. 180 x 80 x 55 mm	
Gewicht	ca. 0,4 kg	
Mechanischer Aufbau	Schutzart (Multi 3510 IDS):	IP 67
Elektrische Sicherheit	Schutzklasse:	111
Prüfzeichen	CE	
Umgebungs-	Lagerung	-25 °C +65 °C
bedingungen	Betrieb	-10 °C +55 °C bei angeschlossenem Steckernetzgerät: +5 °C +40 °C
	Zulässige relative Feuchte	Jahresmittel: < 75 % 30 Tage/Jahr: 95 % übrige Tage: 85 %
Energieversorgung	Batterien	4 x 1,5 V Alkali-Mangan-Batterien, Typ AA
	Laufzeit	ca. 150 h*

* die Laufzeit verkürzt sich z. B. bei dauernd eingeschalteter Displaybeleuchtung

USB-Schnittstelle (Device)	Тур	USB 1.1 USB-B (Device), PC
	Baudrate	einstellbar: 1200, 2400, 4800, 9600, 19200 Baud
	Datenbits	8
	Stoppbits	2
	Parität	keine (None)
	Handshake	RTS/CTS
	Kabellänge	max. 3 m (9.843 feet)
Angewendete	EMV	EG-Richtlinie 2004/108/EG
Richtlinien und Normen		EN 61326-1
		EN 61000-3-2 EN 61000-3-3
		FCC Class A
	Gerätesicherheit	EG-Richtlinie 2006/95/EG EN 61010-1
	IP-Schutzart	EN 60529
	RoHS	EU-Richtlinie 2011/65/EU

16 Firmware-Update

16.1 Firmware-Update für das Messgerät Multi 3510 IDS

Verfügbare Firmware-Updates für das Messgerät finden Sie im Internet. Mit dem Firmware-Update-Programm können Sie mit Hilfe eines Personal Computers (PC) ein Update der Firmware des Multi 3510 IDS auf die neueste Version durchführen.

Für das Update verbinden Sie das Messgerät mit einem PC.

Für das Update über die USB-B-Schnittstelle benötigen Sie:

- eine freie USB-Schnittstelle (virtueller COM-Anschluss) am PC
- den Treiber für die USB-Schnittstelle (auf beiliegender CD-ROM)
- das USB-Kabel (im Lieferumfang des Multi 3510 IDS enthalten).
- Das heruntergeladene Firmware-Update auf einem PC installieren. Im Windows-Startmenü wird ein Update-Ordner erstellt. Ist bereits ein Update-Ordner für das Gerät (oder den Gerätetyp) vorhanden, werden die neuen Daten dort angezeigt.
- 2. Im Windows-Startmenü den Update-Ordner öffnen und das Firmware-Update-Programm für das Messgerät starten.
- 3. Das Multi 3510 IDS mit Hilfe des USB-Schnittstellenkabels mit einer USB-Schnittstelle (virtueller COM-Anschluss) des PC verbinden.
- 4. Das Multi 3510 IDS einschalten.
- 5. Im Firmware-Update-Programm mit OK den Update-Vorgang starten.
- Den Anweisungen des Firmware-Update-Programms folgen. Während des Programmiervorgangs wird eine Meldung und eine Fortschrittsanzeige (in %) angezeigt. Der Programmiervorgang dauert bis zu 15 Minuten. Nach erfolgreicher Programmierung erscheint eine abschließende Meldung. Das Firmware-Update ist abgeschlossen.
- 7. Das Multi 3510 IDS vom PC trennen. Das Multi 3510 IDS ist wieder betriebsbereit.

Nach Aus-/Einschalten des Geräts können Sie prüfen, ob das Gerät die neue Softwareversion übernommen hat (siehe SIE MÖCHTEN WISSEN, WELCHE SOFT-WARE-VERSION IM GERÄT ODER IM IDS-SENSOR IST, SEITE 96).

16.2 Firmware-Update für IDS-Sensoren

Mit dem Firmware-Update-Programm können Sie mit Hilfe eines Personal Computers (PC) ein Update der Firmware eines IDS-Sensors auf die neueste Version durchführen.

Verfügbare Firmware-Updates für IDS-Sensoren finden Sie im Internet.

Für das Update verbinden Sie den IDS-Sensor mit dem Multi 3510 IDS, und das Multi 3510 IDS mit einem PC.

Für das Update über die USB-B-Schnittstelle benötigen Sie:

- eine freie USB-Schnittstelle (virtueller COM-Anschluss) am PC
- den Treiber für die USB-Schnittstelle (auf beiliegender CD-ROM)
- das USB-Kabel (im Lieferumfang des Multi 3510 IDS enthalten).
- Das heruntergeladene Firmware-Update auf einem PC installieren. Im Windows-Startmenü wird ein Update-Ordner erstellt. Ist bereits ein Update-Ordner für den Sensor (oder den Sensortyp) vorhanden, werden die neuen Daten dort angezeigt.
- 2. Im Windows-Startmenü den Update-Ordner öffnen und das Firmware-Update-Programm für den IDS-Sensor starten.
- 3. Den IDS-Sensor mit dem Messgerät Multi 3510 IDS verbinden.
- 4. Das Multi 3510 IDS mit Hilfe des USB-Schnittstellenkabels mit einer USB-Schnittstelle (virtueller COM-Anschluss) des PC verbinden.
- 5. Das Multi 3510 IDS einschalten.
- 6. Im Firmware-Update-Programm mit OK den Update-Vorgang starten.
- Den Anweisungen des Firmware-Update-Programms folgen. Während des Programmiervorgangs wird eine Meldung und eine Fortschrittsanzeige (in %) angezeigt. Der Programmiervorgang dauert bis zu 5 Minuten. Nach erfolgreicher Programmierung erscheint eine abschließende Meldung. Das Firmware-Update ist abgeschlossen.
- Das Multi 3510 IDS vom PC trennen. Messgerät und Sensor sind wieder betriebsbereit.

Nach Aus-/Einschalten des Geräts können Sie prüfen, ob der Sensor die neue Softwareversion übernommen hat (siehe SIE MÖCHTEN WISSEN, WELCHE SOFT-WARE-VERSION IM GERÄT ODER IM IDS-SENSOR IST, SEITE 96).

17 Fachwortverzeichnis

pH/Redox

Asymmetrie	siehe Nullpunkt
Diaphragma	Das Diaphragma ist ein poröser Körper in der Gehäusewand von Refe- renzelektroden oder Elektrolytbrücken. Es vermittelt den elektrischen Kontakt zwischen zwei Lösungen und erschwert den Elektrolyt- austausch. Der Begriff Diaphragma wird u.a. auch für Schliff- und dia- phragmalose Überführungen verwendet.
Kettenspannung	Die Messkettenspannung U ist die messbare Spannung einer Mess- kette in einer Lösung. Sie ist gleich der Summe sämtlicher Galvani- spannungen der Messkette. Ihre Abhängigkeit vom pH ergibt die Messkettenfunktion, die durch die Parameter Steilheit und Nullpunkt charakterisiert ist.
Nullpunkt	Der Nullpunkt einer pH-Messkette ist der pH-Wert, bei dem die pH- Messkette bei einer gegebenen Temperatur die Kettenspannung Null hat. Falls nicht anders vermerkt, gilt dies bei 25 °C.
pH-Wert	Der pH-Wert ist ein Maß für die saure oder basische Wirkung einer wässrigen Lösung. Er entspricht dem negativen dekadische Logarith- mus der molalen Wasserstoffionenaktivität dividiert durch die Einheit der Molalität. Der praktische pH-Wert ist der Messwert einer pH-Mes- sung.
Potentiometrie	Bezeichnung für eine Messtechnik. Das von der Messgröße abhängige Signal der verwendeten Elektrode ist die elektrische Spannung. Der elektrische Strom bleibt dabei konstant.
Redoxspannung (U)	Die Redoxspannung wird durch im Wasser gelöste oxidierende oder reduzierende Stoffe verursacht, sofern diese an einer Elektrodenober- fläche (z. B. aus Platin oder Gold) wirksam werden.
Steilheit	Die Steigung einer linearen Kalibrierfunktion.

Leitfähigkeit

Leitfähigkeit (x)	Kurzform für den Begriff spezifische elektrische Leitfähigkeit. Sie entspricht dem Kehrwert des spezifischen Widerstands. Sie ist ein Messwert für die Eigenschaft eines Stoffs, den elektrischen Strom zu leiten. Im Bereich der Wasseranalytik ist die elektrische Leit- fähigkeit ein Maß für die in einer Lösung enthaltenen ionisierten Stoffe.
Referenztemperatur	Festgelegte Temperatur zum Vergleich temperaturabhängiger Mess- werte. Bei Leitfähigkeitsmessungen erfolgt eine Umrechnung des Messwerts auf einen Leitfähigkeitswert bei 20 °C oder 25 °C Referenz- temperatur.

Salinität	Die absolute Salinität S _A eines Meerwassers entspricht dem Verhältnis der Masse der gelösten Salze zur Masse der Lösung (in g/kg). In der Praxis ist diese Größe nicht direkt messbar. Für ozeanographische Überwachungen wird daher die praktische Salinität nach IOT verwen- det. Sie wird durch eine Messung der elektrischen Leitfähigkeit bestimmt.
Salzgehalt	Allgemeine Bezeichnung für die im Wasser gelöste Salzmenge.
Temperaturkoeffizient	Wert der Steigung $lpha$ einer linearen Temperaturfunktion.
	$\mathcal{H}_{T_{Ref}} = \mathcal{H}_{Meas} * \frac{1}{1 + \alpha * (T - T_{Ref})}$
Temperaturkompen- sation	Bezeichnung für eine Funktion, die den Einfluss der Temperatur auf die Messung berücksichtigt und entsprechend umrechnet. Die Funktions- weise der Temperaturkompensation ist je nach zu bestimmender Mess- größe unterschiedlich. Bei konduktometrischen Messungen erfolgt eine Umrechnung des Messwerts auf eine definierte Referenztemperatur. Für potentiometrische Messungen erfolgt eine Anpassung des Steil- heitswerts an die Temperatur der Messprobe, jedoch keine Umrech- nung des Messwerts.
Widerstand (ρ)	Kurzbezeichnung für den spezifischen elektrolytischen Widerstand. Er entspricht dem Kehrwert der elektrischen Leitfähigkeit.
Zellenkonstante (C)	Von der Geometrie abhängige Kenngröße einer Leitfähigkeitsmess- zelle.

Sauerstoff

OxiCal [®]	WTW-Bezeichnung für ein Verfahren zur Kalibrierung von Sauerstoff- Messeinrichtungen mit wasserdampfgesättigter Luft.
Salinität	Die absolute Salinität S _A eines Meerwassers entspricht dem Verhält- nis der Masse der gelösten Salze zur Masse der Lösung (in g/kg). In der Praxis ist diese Größe nicht direkt messbar. Für ozeanographi- sche Überwachungen wird daher die praktische Salinität nach IOT verwendet. Sie wird durch eine Messung der elektrischen Leitfähig- keit bestimmt.
Salzgehalt	Allgemeine Bezeichnung für die im Wasser gelöste Salzmenge.
Sauerstoffpartial- druck	Der Druck, den der Sauerstoffanteil in einer Gasmischung oder in einer Flüssigkeit ausübt.
Sauerstoffsättigung	Kurzbezeichnung für die relative Sauerstoffsättigung.
	Verhältnis des Sauerstoffpartialdrucks in der Messlösung zum Sau- erstoffpartialdruck der Luft beim aktuell herrschenden Luftdruck. Beispiel: 100% bedeutet, daß in der Messlösung der gleiche Sauer- stoffpartialdruck wie in der Umgebungsluft herrscht – Luft und Mess- lösung sind im Gleichgewicht.

Steilheit (relative)	Bezeichnung, die WTW in der Sauerstoffmesstechnik gebraucht. Er
	drückt das Verhältnis des Steilheitswerts zum Wert eines theoreti-
	schen Referenzsensors gleichen Bautyps aus.

Allgemein

Auflösung	Kleinste von der Anzeige eines Messgeräts noch darstellbare Differenz zwischen zwei Messwerten.
AutoRange	Bezeichnung für eine automatische Messbereichswahl.
Justieren	In eine Messeinrichtung so eingreifen, dass die Ausgangsgröße (z.B. die Anzeige) vom richtigem Wert oder einem als richtig geltenden Wert so wenig wie möglich abweicht, oder dass die Abweichungen innerhalb der Fehlergrenzen bleiben.
Kalibrieren	Vergleich der Ausgangsgröße einer Messeinrichtung (z.B. die Anzeige) mit dem richtigen Wert oder einem als richtig geltenden Wert. Häufig wird der Begriff auch dann verwendet, wenn die Messeinrich- tung gleichzeitig justiert wird (siehe Justieren).
Messgröße	Die Messgröße ist die physikalische Größe, die durch die Messung erfasst wird, z. B. pH, Leitfähigkeit oder Sauerstoffkonzentration.
Messlösung	Bezeichnung für die messbereite Probe. Eine Messprobe wird aus der Analysenprobe (Urprobe) gewöhnlich durch Aufbereitung erhalten. Messlösung und Analysenprobe sind dann identisch, wenn keine Auf- bereitung erfolgte.
Messwert	Der Messwert ist der spezielle, zu ermittelnde Wert einer Messgröße. Er wird als Produkt aus Zahlenwert und Einheit angegeben (z. B. 3 m; 0,5 s; 5,2 A; 373,15 K).
Molalität	Die Molalität ist die Menge (in Mol) eines gelösten Stoffs in 1000 g Lösungsmittel.
Reset	Wiederherstellen eines Ursprungszustands aller Einstellungen eines Messsystems oder einer Messeinrichtung.
Stabilitätskontrolle (AutoRead)	Funktion zur Kontrolle der Messwertstabilität.
Standardlösung	Die Standardlösung ist eine Lösung, deren Messwert per Definition bekannt ist. Sie dient zum Kalibrieren einer Messeinrichtung
Temperaturfunktion	Bezeichnung für eine mathematische Funktion, die das Temperaturver- halten z. B. einer Messprobe, eines Sensors oder eines Sensorteiles wiedergibt.

Stichwortverzeichnis 18

Α

Abschaltautomatik	77
Auslieferzustand	
Messparameter	77
Systemeinstellungen	30
AutoRead	60
рН2	25
Redox	41

В

Batteriefach														1	3,	6	90
Buchsenfeld		•	•			•		•		•	•					1	6

С

Copyright																												2
-----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

D

Daten übertragen 8	37
automatisch8	38
manuell	38
Datensatz 8	35
Datum und Uhrzeit 2	23
Display 1	5
Dreipunktkalibrierung	
ISE6	34
рН	33

E

Einpunktkalibrierung		
рН	28,	32
Erstinbetriebnahme		12

F

FDO® Check													46
Firmware-Update			•	•	•		•	•	•	•			99

L

Initialisieren											77
Intervall Kalibrieren	•			•	•	•			•		69

Κ

Kalibrieren
Leitfähigkeit 56
pH
Kalibrierintervall
Leitfähigkeit 72, 75
02 71
рН 69
Kalibrierprotokolle 57
Kalibrierpunkte
рН 33

L

Lieferumfang	 									12
Luftkalibriergefäß										48

Μ

Meldungen Menü für Kalibrier- und Messeinstellungen	21
Leitfähigkeit	72
02	70
pH/Redox	66
Menüs (Navigation)	20
Messdatensatz	85
Messdatenspeicher	
bearbeiten	84
löschen	84
Speicherplätze	86
Messen	
Leitfähigkeit 53,	59
02	44
рН	25
Redoxspannung	41
Messgenauigkeit	69
Messwertansicht	20
Messwerte übertragen	87
-	

Ν

Nullpunkt pH-Messkette	 27
1 1	

Ρ

PC anschließen											87
Puffersätze pH											67

R

Reset												77
Rücksetzen												77

S

Speichern
automatisches82
manuelles81
Stabilitätskontrolle
automatisch76
manuell
Steilheit
pH
Steilheit relative

Т

Tasten	14
Temperaturkompensation	55
Temperaturmessung	
Leitfähigkeit	55
02	46
рН	26, 42
V	

Vergleichsmessung (O2)48

Ζ			

Zellenkonstante		 56
Zweipunktkalibri	erung	
ISE		 63
рН		 29, 32

Xylem |ˈzīləm|

Das Gewebe in Pflanzen, das Wasser von den Wurzeln nach oben befördert;
 ein führendes globales Wassertechnologie-Unternehmen.

Wir sind ein globales Team, das ein gemeinsames Ziel eint: innovative Lösungen zu schaffen, um den Wasserbedarf unserer Welt zu decken. Im Mittelpunkt unserer Arbeit steht die Entwicklung neuer Technologien, die die Art und Weise der Wasserverwendung und die Aufbereitung sowie Wiedernutzung von Wasser in der Zukunft verbessern. Wir unterstützen Kunden aus der kommunalen Wasser- und Abwasserwirtschaft, der Industrie sowie aus der Privat- und Gewerbegebäudetechnik mit Produkten und Dienstleistungen, um Wasser und Abwasser effizient zu fördern, zu behandeln, zu analysieren, zu überwachen und der Umwelt zurückzuführen. Darüber hinaus hat Xylem sein Produktportfolio um intelligente und smarte Messtechnologien sowie Netzwerktechnologien und innovative Infrastrukturen rund um die Datenanalyse in der Wasser-, Elektrizitäts- und Gasindustrie ergänzt. In mehr als 150 Ländern verfügen wir über feste, langjährige Beziehungen zu Kunden, bei denen wir für unsere leistungsstarke Kombination aus führenden Produktmarken und Anwendungskompetenz, getragen von einer Tradition der Innovation, bekannt sind.

Weitere Informationen darüber, wie Xylem Ihnen helfen kann, finden Sie auf www.xylem.com.

Service und Rücksendungen: Xylem Analytics Germany Sales GmbH & Co. KG WTW Am Achalaich 11 82362 Weilheim Germany

 Tel.:
 +49 881 183-325

 Fax:
 +49 881 183-414

 E-Mail
 wtw.rma@xylem.com

 Internet:
 www.xylemanalytics.com

Xylem Analytics Germany GmbH Am Achalaich 11 82362 Weilheim Germany CE UK CA